3 research outputs found
Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons
Fundamental interactions induced by lattice vibrations on ultrafast time
scales become increasingly important for modern nanoscience and technology.
Experimental access to the physical properties of acoustic phonons in the THz
frequency range and over the entire Brillouin zone is crucial for understanding
electric and thermal transport in solids and their compounds. Here, we report
on the generation and nonlinear propagation of giant (1 percent) acoustic
strain pulses in hybrid gold/cobalt bilayer structures probed with ultrafast
surface plasmon interferometry. This new technique allows for unambiguous
characterization of arbitrary ultrafast acoustic transients. The giant acoustic
pulses experience substantial nonlinear reshaping already after a propagation
distance of 100 nm in a crystalline gold layer. Excellent agreement with the
Korteveg-de Vries model points to future quantitative nonlinear femtosecond
THz-ultrasonics at the nano-scale in metals at room temperature
Nonlinear Frequency-Mixing Photoacoustic Characterisation of a Crack
International audienceA one and two dimensional imaging of a crack by a novel nonlinear frequency-mixing photoacoustic method is presented. Acoustic waves are initiated by a pair of laser beams intensity-modulated at two different frequencies. The first laser beam, intensity modulated at a low frequency fL , generates a thermoelastic wave which modulates the local crack rigidity up to complete closing/opening of the crack, corresponding to crack breathing. The second laser beam, intensity modulated at much higher frequency fH , generates an acoustic wave incident on the breathing crack. The detection of acoustic waves at mixed frequencies fH±nfL ( n=1,2,… ), absent in the excitation frequency spectrum, provides detection of the crack, which can be achieved all-optically. The theory attributes the generation of the frequency-mixed spectral components to the modulation of the acoustic waves reflected/transmitted by the time-varying nonlinear rigidity of the crack. The crack rigidity is modified due to stationary and oscillating components from the laser-induced thermoelastic stresses. The amplitudes of the spectral sidelobes are non-monotonous functions of the increasing thermoelastic loading. Fitting such experimental evolutions with theoretical ones leads to estimating various local parameters of the crack, including its width and rigidity
