34 research outputs found

    Comparative Genomics Suggests that the Fungal Pathogen Pneumocystis Is an Obligate Parasite Scavenging Amino Acids from Its Host's Lungs

    Get PDF
    Pneumocystis jirovecii is a fungus causing severe pneumonia in immuno-compromised patients. Progress in understanding its pathogenicity and epidemiology has been hampered by the lack of a long-term in vitro culture method. Obligate parasitism of this pathogen has been suggested on the basis of various features but remains controversial. We analysed the 7.0 Mb draft genome sequence of the closely related species Pneumocystis carinii infecting rats, which is a well established experimental model of the disease. We predicted 8’085 (redundant) peptides and 14.9% of them were mapped onto the KEGG biochemical pathways. The proteome of the closely related yeast Schizosaccharomyces pombe was used as a control for the annotation procedure (4’974 genes, 14.1% mapped). About two thirds of the mapped peptides of each organism (65.7% and 73.2%, respectively) corresponded to crucial enzymes for the basal metabolism and standard cellular processes. However, the proportion of P. carinii genes relative to those of S. pombe was significantly smaller for the “amino acid metabolism” category of pathways than for all other categories taken together (40 versus 114 against 278 versus 427, P<0.002). Importantly, we identified in P. carinii only 2 enzymes specifically dedicated to the synthesis of the 20 standard amino acids. By contrast all the 54 enzymes dedicated to this synthesis reported in the KEGG atlas for S. pombe were detected upon reannotation of S. pombe proteome (2 versus 54 against 278 versus 427, P<0.0001). This finding strongly suggests that species of the genus Pneumocystis are scavenging amino acids from their host's lung environment. Consequently, they would have no form able to live independently from another organism, and these parasites would be obligate in addition to being opportunistic. These findings have implications for the management of patients susceptible to P. jirovecii infection given that the only source of infection would be other humans

    C. elegans Agrin Is Expressed in Pharynx, IL1 Neurons and Distal Tip Cells and Does Not Genetically Interact with Genes Involved in Synaptogenesis or Muscle Function

    Get PDF
    Agrin is a basement membrane protein crucial for development and maintenance of the neuromuscular junction in vertebrates. The C. elegans genome harbors a putative agrin gene agr-1. We have cloned the corresponding cDNA to determine the primary structure of the protein and expressed its recombinant fragments to raise specific antibodies. The domain organization of AGR-1 is very similar to the vertebrate orthologues. C. elegans agrin contains a signal sequence for secretion, seven follistatin domains, three EGF-like repeats and two laminin G domains. AGR-1 loss of function mutants did not exhibit any overt phenotypes and did not acquire resistance to the acetylcholine receptor agonist levamisole. Furthermore, crossing them with various mutants for components of the dystrophin-glycoprotein complex with impaired muscle function did not lead to an aggravation of the phenotypes. Promoter-GFP translational fusion as well as immunostaining of worms revealed expression of agrin in buccal epithelium and the protein deposition in the basal lamina of the pharynx. Furthermore, dorsal and ventral IL1 head neurons and distal tip cells of the gonad arms are sources of agrin production, but no expression was detectable in body muscles or in the motoneurons innervating them. Recombinant worm AGR-1 fragment is able to cluster vertebrate dystroglycan in cultured cells, implying a conservation of this interaction, but since neither of these proteins is expressed in muscle of C. elegans, this interaction may be required in different tissues. The connections between muscle cells and the basement membrane, as well as neuromuscular junctions, are structurally distinct between vertebrates and nematodes

    Die Stoffwechselwirkungen der SchilddrĂŒsenhormone

    Get PDF

    Sample treatment for tissue proteomics in cancer, toxicology, and forensics

    Get PDF
    Since the birth of proteomics science in the 1990, the number of applications and of sample preparation methods has grown exponentially, making a huge contribution to the knowledge in life science disciplines. Continuous improvements in the sample treatment strategies unlock and reveal the fine details of disease mechanisms, drug potency, and toxicity as well as enable new disciplines to be investigated such as forensic science. This chapter will cover the most recent developments in sample preparation strategies for tissue proteomics in three areas, namely, cancer, toxicology, and forensics, thus also demonstrating breath of application within the domain of health and well-being, pharmaceuticals, and secure societies. In particular, in the area of cancer (human tumor biomarkers), the most efficient and multi-informative proteomic strategies will be covered in relation to the subsequent application of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and liquid extraction surface analysis (LESA), due to their ability to provide molecular localization of tumor biomarkers albeit with different spatial resolution. With respect to toxicology, methodologies applied in toxicoproteomics will be illustrated with examples from its use in two important areas: the study of drug-induced liver injury (DILI) and studies of effects of chemical and environmental insults on skin, i.e., the effects of irritants, sensitizers, and ionizing radiation. Within this chapter, mainly tissue proteomics sample preparation methods for LC-MS/MS analysis will be discussed as (i) the use of LC-MS/MS is majorly represented in the research efforts of the bioanalytical community in this area and (ii) LC-MS/MS still is the gold standard for quantification studies. Finally, the use of proteomics will also be discussed in forensic science with respect to the information that can be recovered from blood and fingerprint evidence which are commonly encountered at the scene of the crime. The application of proteomic strategies for the analysis of blood and fingerprints is novel and proteomic preparation methods will be reported in relation to the subsequent use of mass spectrometry without any hyphenation. While generally yielding more information, hyphenated methods are often more laborious and time-consuming; since forensic investigations need quick turnaround, without compromising validity of the information, the prospect to develop methods for the application of quick forensic mass spectrometry techniques such as MALDI-MS (in imaging or profiling mode) is of great interest

    Neurovascular Compression and Spasmodic Torticollis

    Full text link
    corecore