5 research outputs found

    APOMAB®, a La-Specific Monoclonal Antibody, Detects the Apoptotic Tumor Response to Life-Prolonging and DNA-Damaging Chemotherapy

    Get PDF
    Background: Antineoplastic therapy may impair the survival of malignant cells to produce cell death. Consequently, direct measurement of tumor cell death in vivo is a highly desirable component of therapy response monitoring. We have previously shown that APOMAB® representing the DAB4 clone of a La/SSB-specific murine monoclonal autoantibody is a malignant cell-death ligand, which accumulates preferentially in tumors in an antigen-specific and dose-dependent manner after DNA-damaging chemotherapy. Here, we aim to image tumor uptake of APOMAB® (DAB4) and to define its biological correlates. Methodology/Principal Findings: Brisk tumor cell apoptosis is induced in the syngeneic EL4 lymphoma model after treatment of tumor-bearing mice with DNA-damaging cyclophosphamide/etoposide chemotherapy. Tumor and normal organ accumulation of Indium 111 (111In)-labeled La-specific DAB4 mAb as whole IgG or IgG fragments was quantified by whole-body static imaging and organ assay in tumor-bearing mice. Immunohistochemical measurements of tumor caspase-3 activation and PARP-1 cleavage, which are indicators of early and late apoptosis, respectively, were correlated with tumor accumulation of DAB4. Increased tumor accumulation of DAB4 was associated directly with both the extent of chemotherapy-induced tumor cell death and DAB4 binding per dead tumor cell. Tumor DAB4 accumulation correlated with cumulative caspase-3 activation and PARP-1 cleavage as tumor biomarkers of apoptosis and was directly related to the extended median survival time of tumor-bearing mice. Conclusions/Significance: Radiolabeled La-specific monoclonal antibody, DAB4, detected dead tumor cells after chemotherapy, rather than chemosensitive normal tissues of gut and bone marrow. DAB4 identified late apoptotic tumor cells in vivo. Hence, radiolabeled DAB4 may usefully image responses to human carcinoma therapy because DAB4 would capture the protracted cell death of carcinoma. We believe that the ability of radiolabeled DAB4 to rapidly assess the apoptotic tumor response and, consequently, to potentially predict extended survival justifies its future clinical development as a radioimmunoscintigraphic agent. This article is part I of a two-part series providing proof-of-concept for the the diagnostic and therapeutic use of a La-specific monoclonal antibody, the DAB4 clone of which is represented by the registered trademark, APOMAB®.Fares Al-Ejeh, Jocelyn M. Darby, Chris Tsopelas, Douglas Smyth, Jim Manavis and Michael P. Brow

    Paediatric acute myeloid leukaemia with the t(7;12)(q36;p13) rearrangement: a review of the biological and clinical management aspects

    Get PDF
    The presence of chromosomal abnormalities is one of the most important criteria for leukaemia diagnosis and management. Infant leukaemia is a rare disease that affects children in their first year of life. It has been estimated that approximately one third of infants with acute myeloid leukaemia harbour the t(7;12)(q36;p13) rearrangement in their leukaemic blasts. However, the WHO classification of acute myeloid leukaemia does not yet include the t(7;12) as a separate entity among the different genetic subtypes, although the presence of this chromosomal abnormality has been associated with an extremely poor clinical outcome. Currently, there is no consensus treatment for t(7;12) leukaemia patients. However, with the inferior outcome with the standard induction therapy, stem cell transplantation may offer a better chance for disease control. A better insight into the chromosome biology of this entity might shed some light into the pathogenic mechanisms arising from this chromosomal translocation, that at present are not fully understood. Further work is needed to improve our understanding of the molecular and genetic basis of this disorder. This will hopefully open some grounds for possible tailored treatment for this subset of very young patients with inferior disease outcome. This review aims at highlighting the cytogenetic features that characterise the t(7;12) leukaemias for a better detection of the abnormality in the diagnostic setting. We also review treatment and clinical outcome in the cases reported to date
    corecore