14 research outputs found

    A multi-centre randomized controlled trial comparing electrothermal arthroscopic capsulorrhaphy versus open inferior capsular shift for patients with shoulder instability: Protocol implementation and interim performance: Lessons learned from conducting a multi-centre RCT [ISRCTN68224911; NCT00251160]

    Get PDF
    BACKGROUND: The shoulder is the most frequently dislocated joint in the body. Multiple causes and pathologies account for the various types of shoulder instability. Multi-directional instability (MDI) and multi-directional laxity with antero-inferior instability (MDL-AII) are similar in pathology, less common and more difficult to treat. These instabilities are caused by ligamentous capsular redundancy. When non-operative management fails for these patients, quality of life is significantly impaired and surgical treatment is required to tighten the ligaments and joint capsule. The current reference (gold) standard treatment for MDI/MDL-AII is an open inferior capsular shift (ICS) surgical procedure. An alternative treatment involves arthroscopic thermal shrinkage of redundant capsular tissue to tighten the joint. However, there is a lack of scientific evidence to support the use of this technique called, electrothermal arthroscopic capsulorrhaphy (ETAC). This trial will compare the effectiveness of ETAC to open ICS in patients with MDI and MDL-AII, using patient-based quality of life outcome assessments. METHODS: This study is a multi-centre randomized clinical trial with a calculated sample size of 58 patients (p = 0.05, 80% power). Eligible patients are clinically diagnosed with MDI or MDL-AII and have failed standardized non-operative management. A diagnostic shoulder arthroscopy is performed to confirm eligibility, followed by intra-operative randomization to the ETAC or ICS surgical procedure. The primary outcome is the disease-specific quality of life questionnaire (Western Ontario Shoulder Instability Index), measured at baseline, 3, 6, 12 and 24 months. Secondary outcomes include shoulder-specific measures (American Shoulder and Elbow Surgeons Score and Constant Score). Other outcomes include recurrent instability, complications and operative time. The outcome measurements will be compared on an intention-to-treat basis, using two-sample independent t-tests to assess statistical significance. A Generalized Estimated Equations (GEE) analysis will determine whether there is an effect over time. DISCUSSION: This ongoing trial has encountered unexpected operational and practical issues, including slow patient enrollment due to high intra-operative exclusion rates. However, the authors have a greater understanding of multi-directional laxity in the shoulder and anticipate the results of this trial will provide the medical community with the best scientific clinical evidence on the efficacy of ETAC compared to open ICS

    Identifying Mechanisms by Which Escherichia coli O157:H7 Subverts Interferon-γ Mediated Signal Transducer and Activator of Transcription-1 Activation

    Get PDF
    Enterohemorrhagic Escherichia coli serotype O157:H7 is a food borne enteric bacterial pathogen that causes significant morbidity and mortality in both developing and industrialized nations. E. coli O157:H7 infection of host epithelial cells inhibits the interferon gamma pro-inflammatory signaling pathway, which is important for host defense against microbial pathogens, through the inhibition of Stat-1 tyrosine phosphorylation. The aim of this study was to determine which bacterial factors are involved in the inhibition of Stat-1 tyrosine phosphorylation. Human epithelial cells were challenged with either live bacteria or bacterial-derived culture supernatants, stimulated with interferon-gamma, and epithelial cell protein extracts were then analyzed by immunoblotting. The results show that Stat-1 tyrosine phosphorylation was inhibited by E. coli O157:H7 secreted proteins. Using sequential anion exchange and size exclusion chromatography, YodA was identified, but not confirmed to mediate subversion of the Stat-1 signaling pathway using isogenic mutants. We conclude that E. coli O157:H7 subverts Stat-1 tyrosine phosphorylation in response to interferon-gamma through a still as yet unidentified secreted bacterial protein

    Loss of Guanylyl Cyclase C (GCC) Signaling Leads to Dysfunctional Intestinal Barrier

    Get PDF
    Guanylyl Cyclase C (GCC) signaling via uroguanylin (UGN) and guanylin activation is a critical mediator of intestinal fluid homeostasis, intestinal cell proliferation/apoptosis, and tumorigenesis. As a mechanism for some of these effects, we hypothesized that GCC signaling mediates regulation of intestinal barrier function.Paracellular permeability of intestinal segments was assessed in wild type (WT) and GCC deficient (GCC-/-) mice with and without lipopolysaccharide (LPS) challenge, as well as in UGN deficient (UGN-/-) mice. IFNγ and myosin light chain kinase (MLCK) levels were determined by real time PCR. Expression of tight junction proteins (TJPs), phosphorylation of myosin II regulatory light chain (MLC), and STAT1 activation were examined in intestinal epithelial cells (IECs) and intestinal mucosa. The permeability of Caco-2 and HT-29 IEC monolayers, grown on Transwell filters was determined in the absence and presence of GCC RNA interference (RNAi). We found that intestinal permeability was increased in GCC-/- and UGN-/- mice compared to WT, accompanied by increased IFNγ levels, MLCK and STAT1 activation in IECs. LPS challenge promotes greater IFNγ and STAT1 activation in IECs of GCC-/- mice compared to WT mice. Claudin-2 and JAM-A expression were reduced in GCC deficient intestine; the level of phosphorylated MLC in IECs was significantly increased in GCC-/- and UGN-/- mice compared to WT. GCC knockdown induced MLC phosphorylation, increased permeability in IEC monolayers under basal conditions, and enhanced TNFα and IFNγ-induced monolayer hyperpermeability.GCC signaling plays a protective role in the integrity of the intestinal mucosal barrier by regulating MLCK activation and TJ disassembly. GCC signaling activation may therefore represent a novel mechanism in maintaining the small bowel barrier in response to injury
    corecore