4,702 research outputs found

    Cosmographic constraints on a class of Palatini f(R) gravity

    Full text link
    Modified gravity, known as f(R)f(R) gravity, has presently been applied to Cosmology as a realistic alternative to dark energy. For this kind of gravity the expansion of the Universe may accelerate while containing only baryonic and cold dark matter. The aim of the present investigation is to place cosmographic constraints on the class of theories of the form f(R)=R−α/Rnf(R)=R - \alpha/R^n within the Palatini approach. Although extensively discussed in recent literature and confronted with several observational data sets, cosmological tests are indeed inconclusive about the true signal of nn in this class of theories. This is particularly important to define which kind of corrections (infra-red or high-energy) to general relativity this class of theory indeed represent. We shed some light on this question by examining the evolution of the deceleration parameter q(z)q(z) for these theories. We find that for a large range of α\alpha, models based on f(R)=R−α/Rnf(R) = R - \alpha/R^{n} gravity in the Palatini approach can only have positive values for nn, placing thus a broad restriction on this class of gravity.Comment: 4 pages, 2 figures, Latex, Submitte

    Type II Seesaw and a Gauge Model for the Bimaximal Mixing Explanation of Neutrino Puzzles

    Full text link
    We present a gauge model for the bimaximal mixing pattern among the neutrinos that explains both the atmospheric and solar neutrino data via large angle vacuum oscillation among the three known neutrinos. The model does not include righthanded neutrinos but additional Higgs triplets which acquire naturally small vev's due to the type II seesaw mechanism. A combination of global Le−Lμ−LτL_e-L_{\mu}-L_{\tau} and S3S_3 symmetries constrain the mass matrix for both charged leptons and neutrinos in such a way that the bimaximal pattern emerges naturally at the tree level and needed splittings among neutrinos at the one loop level. This model predicts observable branching ratios for τ→μμμ\tau\to \mu \mu\mu, which could be used to test it.Comment: Latex file, 8 pages, five figures include

    Charged and Neutral Currents in a 3-3-1 Model with Right-Handed Neutrinos

    Full text link
    The charged and the neutral currents are obtained by using a formal algebraical approach (developed and applied by the author) within the exact solution of a 3-3-1 gauge model with right-handed neutrinos. The entire Standard Model phenomenology is recovered without imposing any supplemental condition, but only by choosing an adecquate set of parameters from the very beginning of the calculus. A new and rich phenomenology regarding the particles and their currents occurs as well. The appealing feature of our results resides in the exact expressions of the currents which need not the adjustment usually due to the small mixing angle ϕ\phi between neutral bosons ZZ and Z′Z^{\prime} (like in the most of the papers in the literature treating the same issue). The required mixing was considered and aleready performed as an intermediate step by the solving method itself, since the physical eigenstates of those bosons were determined and then identified in the neutral currents.Comment: 14 pages, 1 Table, no figure

    Neutrino Decay and Neutrinoless Double Beta Decay in a 3-3-1 Model

    Full text link
    In this work we show that the implementation of spontaneous breaking of the lepton number in the 3-3-1 model with right-handed neutrinos gives rise to fast neutrino decay with majoron emission and generates a bunch of new contributions to the neutrinoless double beta decay.Comment: Version accepted for publication in the Phys. Rev.

    The Left-Right SU(3)(L)xSU(3)(R)xU(1)(X) Model with Light, keV and Heavy Neutrinos

    Full text link
    We construct a full left-right model for the electroweak interactions based on the SU(3)L⊗SU(3)R⊗U(1)XSU(3)_{L}\otimes SU(3)_{R}\otimes U(1)_{X} gauge symmetry. The fermion content of the model is such that anomaly cancellation restricts the number of families to be a multiple of three. One of the most important features of the model is the joint presence of three light active neutrinos, three additional neutrinos at keV mass scale, and six heavy ones with masses around\textbf{101110^{11}} GeV. They form a well-motivated part of the spectrum in the sense they address challenging problems related to neutrino oscillation, warm dark matter, and baryogenesis through leptogenesis.Comment: 11 pages. Small corrections and typos fixed. Accepted for publication in PR

    Lookback time bounds from energy conditions

    Full text link
    In general relativity, the energy conditions are invoked to restrict general energy-momentum tensors on physical grounds. We show that in the standard Friedmann-Lemaitre-Robertson-Walker (FLRW) approach to cosmological modeling, where the energy and matter components of the cosmic fluid are unknown, the energy conditions provide model-independent bounds on the behavior of the lookback time of cosmic sources as a function of the redshift for any value of the spatial curvature. We also confront such bounds with a lookback time sample which is built from the age estimates of 32 galaxies lying in the interval 0.11≲z≲1.840.11 \lesssim z \lesssim 1.84 and by assuming the total expanding age of the Universe to be 13.7±0.213.7 \pm 0.2 Gyr, as obtained from current cosmic microwave background experiments. In agreement with previous results, we show that all energy conditions seem to have been violated at some point of the recent past of cosmic evolution.Comment: 7 pages, 3 figures. v2: Minor changes, published in Phys.Rev.D in the present for
    • …
    corecore