30,493 research outputs found
Spectra of primordial fluctuations in two-perfect-fluid regular bounces
We introduce analytic solutions for a class of two components bouncing
models, where the bounce is triggered by a negative energy density perfect
fluid. The equation of state of the two components are constant in time, but
otherwise unrelated. By numerically integrating regular equations for scalar
cosmological perturbations, we find that the (would be) growing mode of the
Newtonian potential before the bounce never matches with the the growing mode
in the expanding stage. For the particular case of a negative energy density
component with a stiff equation of state we give a detailed analytic study,
which is in complete agreement with the numerical results. We also perform
analytic and numerical calculations for long wavelength tensor perturbations,
obtaining that, in most cases of interest, the tensor spectral index is
independent of the negative energy fluid and given by the spectral index of the
growing mode in the contracting stage. We compare our results with previous
investigations in the literature.Comment: 11 pages, 5 figure
Explosion of smoothness for conjugacies between multimodal maps
Let and be smooth multimodal maps with no periodic attractors and no
neutral points. If a topological conjugacy between and is
at a point in the nearby expanding set of , then is a smooth
diffeomorphism in the basin of attraction of a renormalization interval of .
In particular, if and are unimodal maps and
is at a boundary of then is in .Comment: 22 page
Multi-Step Knowledge-Aided Iterative ESPRIT for Direction Finding
In this work, we propose a subspace-based algorithm for DOA estimation which
iteratively reduces the disturbance factors of the estimated data covariance
matrix and incorporates prior knowledge which is gradually obtained on line. An
analysis of the MSE of the reshaped data covariance matrix is carried out along
with comparisons between computational complexities of the proposed and
existing algorithms. Simulations focusing on closely-spaced sources, where they
are uncorrelated and correlated, illustrate the improvements achieved.Comment: 7 figures. arXiv admin note: text overlap with arXiv:1703.1052
Relativistic deuteron structure function at large Q^2
The deuteron deep inelastic unpolarized structure function F_2^D is
calculated using the Wilson operator product expansion method. The long
distance behaviour, related to the deuteron bound state properties, is
evaluated using the Bethe-Salpeter equation with one particle on mass shell.
The calculation of the ratio F_2^D/F_2^N is compared with other convolution
models showing important deviations in the region of large x. The implications
in the evaluation of the neutron structure function from combined data on
deuterons and protons are discussed.Comment: 7 pages, 1 ps figure, RevTeX source, 1 tar.gz file. Submited to
Physical Letter
Symmetry Aspects in Nonrelativistic Multi-Scalar Field Models and Application to a Coupled Two-Species Dilute Bose Gas
We discuss unusual aspects of symmetry that can happen due to entropic
effects in the context of multi-scalar field theories at finite temperature. We
present their consequences, in special, for the case of nonrelativistic models
of hard core spheres. We show that for nonrelativistic models phenomena like
inverse symmetry breaking and symmetry non-restoration cannot take place, but a
reentrant phase at high temperatures is shown to be possible for some region of
parameters. We then develop a model of interest in studies of Bose-Einstein
condensation in dilute atomic gases and discuss about its phase transition
patterns. In this application to a Bose-Einstein condensation model, however,
no reentrant phases are found.Comment: 8 pages, 1 eps figure, IOP style. Based on a talk given by R. O.
Ramos at the QFEXT05 workshop, Barcelona, Spain, September 5-9, 2005. One
reference was update
Effective action in DSR1 quantum field theory
We present the one-loop effective action of a quantum scalar field with DSR1
space-time symmetry as a sum over field modes. The effective action has real
and imaginary parts and manifest charge conjugation asymmetry, which provides
an alternative theoretical setting to the study of the particle-antiparticle
asymmetry in nature.Comment: 8 page
Soft X-ray emission in kink-unstable coronal loops
Solar flares are associated with intense soft X-ray emission generated by the
hot flaring plasma. Kink unstable twisted flux-ropes provide a source of
magnetic energy which can be released impulsively and account for the flare
plasma heating. We compute the temporal evolution of the thermal X-ray emission
in kink-unstable coronal loops using MHD simulations and discuss the results of
with respect to solar flare observations. The model consists of a highly
twisted loop embedded in a region of uniform and untwisted coronal magnetic
field. We let the kink instability develop, compute the evolution of the plasma
properties in the loop (density, temperature) without accounting for mass
exchange with the chromosphere. We then deduce the X-ray emission properties of
the plasma during the whole flaring episode. During the initial phase of the
instability plasma heating is mostly adiabatic. Ohmic diffusion takes over as
the instability saturates, leading to strong and impulsive heating (> 20 MK),
to a quick enhancement of X-ray emission and to the hardening of the thermal
X-ray spectrum. The temperature distribution of the plasma becomes broad, with
the emission measure depending strongly on temperature. Significant emission
measures arise for plasma at temperatures T > 9 MK. The magnetic flux-rope then
relaxes progressively towards a lower energy state as it reconnects with the
background flux. The loop plasma suffers smaller sporadic heating events but
cools down conductively. The total thermal X-ray emission slowly fades away
during this phase, and the high temperature component of emission measure
distribution converges to the power-law distribution . The
amount of twist deduced directly from the X-ray emission patterns is
considerably lower than the maximum magnetic twist in the simulated flux-ropes.Comment: submitted to A&
- âŠ