13,926 research outputs found

    Evidence for a Variable Ultrafast Outflow in the Newly Discovered Ultraluminous Pulsar NGC 300 ULX-1

    Get PDF
    Ultraluminous pulsars are a definite proof that persistent super-Eddington accretion occurs in nature. They support the scenario according to which most Ultraluminous X-ray Sources (ULXs) are super-Eddington accretors of stellar mass rather than sub-Eddington intermediate mass black holes. An important prediction of theories of supercritical accretion is the existence of powerful outflows of moderately ionized gas at mildly relativistic speeds. In practice, the spectral resolution of X-ray gratings such as RGS onboard XMM-Newton is required to resolve their observational signatures in ULXs. Using RGS, outflows have been discovered in the spectra of 3 ULXs (none of which are currently known to be pulsars). Most recently, the fourth ultraluminous pulsar was discovered in NGC 300. Here we report detection of an ultrafast outflow (UFO) in the X-ray spectrum of the object, with a significance of more than 3{\sigma}, during one of the two simultaneous observations of the source by XMM-Newton and NuSTAR in December 2016. The outflow has a projected velocity of 65000 km/s (0.22c) and a high ionisation factor with a log value of 3.9. This is the first direct evidence for a UFO in a neutron star ULX and also the first time that this its evidence in a ULX spectrum is seen in both soft and hard X-ray data simultaneously. We find no evidence of the UFO during the other observation of the object, which could be explained by either clumpy nature of the absorber or a slight change in our viewing angle of the accretion flow.Comment: 10 pages, 4 figures. Accepted to MNRA

    The motion of two masses coupled to a massive spring

    Full text link
    We discuss the classical motion of a spring of arbitrary mass coupled to two arbitrary massive blocks attached at its ends. A general approach to the problem is presented and some general results are obtained. Examples for which a simple elastic function can be inferred are discussed and the normal modes and normal frequencies obtained. An approximation procedure to the evaluation of the normel frequencies in the case of uniform elastic function and mass density is also discussed.Comment: Standard Latex file plus three eps figure

    Evidence for entanglement at high temperatures in an engineered molecular magnet

    Full text link
    The molecular compound [Fe2_{2}(ÎĽ2\mu_{2}-oxo)(C3_{3}H4_{4}N2_{2})6_{6}(C2_{2}O4_{4})2_{2}] was designed and synthesized for the first time and its structure was determined using single-crystal X-ray diffraction. The magnetic susceptibility of this compound was measured from 2 to 300 K. The analysis of the susceptibility data using protocols developed for other spin singlet ground-state systems indicates that the quantum entanglement would remain at temperatures up to 732 K, significantly above the highest entanglement temperature reported to date. The large gap between the ground state and the first-excited state (282 K) suggests that the spin system may be somewhat immune to decohering mechanisms. Our measurements strongly suggest that molecular magnets are promising candidate platforms for quantum information processing

    Mechanisms of 2n potato pollen formation in dihaploid Solanum tuberosum L. x S. chacoense Bitt. hybrid clones.

    Get PDF
    The backcrosses of dihaploid Solanum tuberosum with wild species hybrids generating tetraploids progenies require the formation of non-reduced pollen. In this work, the mechanisms responsible for the formation of 2n pollen in 28 dihaploid Solanum tuberosum x Solanum chacoense hybrids were studied. Four mechanisms were found: parallelspindles (ps), fused spindles (fs), premature cytokinesis-1 (pc-1) and premature cytokinesis-2 (pc-2). The ps mechanism was the most frequent, being found in 23 of the 28 assessed clones. The ps and fs mechanisms led to the formation of dyads by first division restitution (FDR), transferring about 80% of the heterozygosity to the progenies. The pc-1 and pc-2 mechanisms also led to the formation of dyads, but they were genetically equivalent to second division restitution (SDR), transferring only 40% of the heterozygosity to the progenies. Occurrence of FDR and SDR were shown to be associated in 12 clones, indicating that the clones can produce non-reduced microspores by more than one mechanism. However, only one mechanism is functional in a single pollen-grain mother-cell. Clones 9-2, 9-3, 9-6 and 15-15 are recommended for use in 4x x 2x matings

    Fertility preservation in ovarian tumours

    Get PDF
    A considerable number of patients with a cancer diagnosis are of childbearing age and have not satisfied their desire for a family. Despite ovarian cancer (OC) usually occurring in older patients, 3%–14% are diagnosed at a fertile age with the overall 5-year survival rate being 91.2% in women ≤44 years of age when it is found at 1A–B stage. In this scenario, testing the safety and the efficacy of fertility sparing strategies in OC patients is very important overall in terms of quality of life. Unfortunately, the lack of randomised trials to validate conservative approaches does not guarantee the safety of fertility preservation strategies. However, evidence-based data from descriptive series suggest that in selected cases, the preservation of the uterus and at least one part of the ovary does not lead to a high risk of relapse. This conservative surgery helps to maintain organ function, giving patients of childbearing age the possibility to preserve their fertility. We hereby analysed the main evidence from the international literature on this topic in order to highlight the selected criteria for conservative management of OC patients, including healthy BRCA mutations carriers

    A new method for the solution of the Schrodinger equation

    Full text link
    We present a new method for the solution of the Schrodinger equation applicable to problems of non-perturbative nature. The method works by identifying three different scales in the problem, which then are treated independently: An asymptotic scale, which depends uniquely on the form of the potential at large distances; an intermediate scale, still characterized by an exponential decay of the wave function and, finally, a short distance scale, in which the wave function is sizable. The key feature of our method is the introduction of an arbitrary parameter in the last two scales, which is then used to optimize a perturbative expansion in a suitable parameter. We apply the method to the quantum anharmonic oscillator and find excellent results.Comment: 4 pages, 4 figures, RevTex

    Gaussian superpositions in scalar-tensor quantum cosmological models

    Get PDF
    A free scalar field minimally coupled to gravity model is quantized and the Wheeler-DeWitt equation in minisuperspace is solved analytically, exhibiting positive and negative frequency modes. The analysis is performed for positive, negative and zero values of the curvature of the spatial section. Gaussian superpositions of the modes are constructed, and the quantum bohmian trajectories are determined in the framework of the Bohm-de Broglie interpretation of quantum cosmology. Oscillating universes appear in all cases, but with a characteristic scale of the order of the Planck scale. Bouncing regular solutions emerge for the flat curvature case. They contract classically from infinity until a minimum size, where quantum effects become important acting as repulsive forces avoiding the singularity and creating an inflationary phase, expanding afterwards to an infinite size, approaching the classical expansion as long as the scale factor increases. These are non-singular solutions which are viable models to describe the early Universe.Comment: 14 pages, LaTeX, 3 Postscript figures, uses graficx.st
    • …
    corecore