7,088 research outputs found

    New insights into the biomechanics of Legg-Calvé-Perthes’ disease: The role of epiphyseal skeletal immaturity in vascular obstruction

    Get PDF
    ObjectivesLegg–Calvé–Perthes’ disease (LCP) is an idiopathic osteonecrosis of the femoral head that is most common in children between four and eight years old. The factors that lead to the onset of LCP are still unclear; however, it is believed that interruption of the blood supply to the developing epiphysis is an important factor in the development of the condition.MethodsFinite element analysis modelling of the blood supply to the juvenile epiphysis was investigated to understand under which circumstances the blood vessels supplying the femoral epiphysis could become obstructed. The identification of these conditions is likely to be important in understanding the biomechanics of LCP.ResultsThe results support the hypothesis that vascular obstruction to the epiphysis may arise when there is delayed ossification and when articular cartilage has reduced stiffness under compression.ConclusionThe findings support the theory of vascular occlusion as being important in the pathophysiology of Perthes disease

    On the influence that the ground electrode diameter has in the propulsion efficiency of an asymmetric capacitor in nitrogen gas

    Full text link
    In this work the propulsion force developed in an asymmetric capacitor will be calculated for three different diameters of the ground electrode. The used ion source is a small diameter wire, which generates a positive corona discharge in nitrogen gas directed to the ground electrode. By applying the fluid dynamic and electrostatic theories all hydrodynamic and electrostatic forces that act on the considered geometries will be computed in an attempt to provide a physical insight on the force mechanism that acts on the asymmetrical capacitors, and also to understand how to increase the efficiency of propulsion.Comment: 13 pages, 8 figures, Accepted for publication in "Physics of Plasmas

    The MIPSGAL View of Supernova Remnants in the Galactic Plane

    Get PDF
    We report the detection of Galactic supernova remnants (SNRs) in the mid-infrared (at 24 and 70 μm), in the coordinate ranges 10° < l < 65° and 285° < l < 350°, |b| < 1°, using MIPS aboard the Spitzer Space Telescope. We search for infrared counterparts to SNRs in Green's catalog and identify 39 out of 121, i.e., a detection rate of about 32%. Such a relatively low detection fraction is mainly due to confusion with nearby foreground/background sources and diffuse emission. The SNRs in our sample show a linear trend in [F_8/F_(24)] versus [F_(70)/F_(24)]. We compare their infrared fluxes with their corresponding radio flux at 1.4 GHz and find that most remnants have a ratio of 70 μm to 1.4 GHz which is similar to those found in previous studies of SNRs (with the exception of a few that have ratios closer to those of H II regions). Furthermore, we retrieve a slope close to unity when correlating infrared (24 and 70 μm) with 1.4 GHz emission. Our survey is more successful in detecting remnants with bright X-ray emission, which we find is well correlated with the 24 μm morphology. Moreover, by comparing the power emitted in the X-ray, infrared, and radio, we conclude that the energy released in the infrared is comparable to the cooling in the X-ray range

    Photonic Hall effect in cold atomic clouds

    Full text link
    On the basis of exact numerical simulations and analytical calculations, we describe qualitatively and quantitatively the interference processes at the origin of the photonic Hall effect for resonant Rayleigh (point-dipole) scatterers in a magnetic field. For resonant incoming light, the induced giant magneto-optical effects result in relative Hall currents in the percent range, three orders of magnitude larger than with classical scatterers. This suggests that the observation of the photonic Hall effect in cold atomic vapors is within experimental reach.Comment: 4 pages 4 figure
    corecore