3,759 research outputs found

    Pose consensus based on dual quaternion algebra with application to decentralized formation control of mobile manipulators

    Full text link
    This paper presents a solution based on dual quaternion algebra to the general problem of pose (i.e., position and orientation) consensus for systems composed of multiple rigid-bodies. The dual quaternion algebra is used to model the agents' poses and also in the distributed control laws, making the proposed technique easily applicable to time-varying formation control of general robotic systems. The proposed pose consensus protocol has guaranteed convergence when the interaction among the agents is represented by directed graphs with directed spanning trees, which is a more general result when compared to the literature on formation control. In order to illustrate the proposed pose consensus protocol and its extension to the problem of formation control, we present a numerical simulation with a large number of free-flying agents and also an application of cooperative manipulation by using real mobile manipulators

    Phonon Linewidths and Electron Phonon Coupling in Nanotubes

    Full text link
    We prove that Electron-phonon coupling (EPC) is the major source of broadening for the Raman G and G- peaks in graphite and metallic nanotubes. This allows us to directly measure the optical-phonon EPCs from the G and G- linewidths. The experimental EPCs compare extremely well with those from density functional theory. We show that the EPC explains the difference in the Raman spectra of metallic and semiconducting nanotubes and their dependence on tube diameter. We dismiss the common assignment of the G- peak in metallic nanotubes to a Fano resonance between phonons and plasmons. We assign the G+ and G- peaks to TO (tangential) and LO (axial) modes.Comment: 5 pages, 4 figures (correction in label of fig 3

    Probing the Electronic Structure of Bilayer Graphene by Raman Scattering

    Full text link
    The electronic structure of bilayer graphene is investigated from a resonant Raman study using different laser excitation energies. The values of the parameters of the Slonczewski-Weiss-McClure model for graphite are measured experimentally and some of them differ significantly from those reported previously for graphite, specially that associated with the difference of the effective mass of electrons and holes. The splitting of the two TO phonon branches in bilayer graphene is also obtained from the experimental data. Our results have implications for bilayer graphene electronic devices.Comment: 4 pages, 4 figure

    Percolation Effects in Very High Energy Cosmic Rays

    Full text link
    Most QCD models of high energy collisions predict that the inelasticity KK is an increasing function of the energy. We argue that, due to percolation of strings, this behaviour will change and, at s≃104\sqrt{s} \simeq 10^4 GeV, the inelasticity will start to decrease with the energy. This has straightforward consequences in high energy cosmic ray physics: 1) the relative depth of the shower maximum Xˉ\bar{X} grows faster with energy above the knee; 2) the energy measurements of ground array experiments at GZK energies could be overestimated.Comment: Correction of equation (19) and figures 3 and 4. 4 pages, 4 figure

    Correlação entre distância genética e heterose para comprimento de panícula por cruzamento dialélico entre acessos de arroz (Oryza sativa L.) de base genética ampla.

    Get PDF
    O objetivo desse trabalho foi correlacionar os dados de distância genética de Rogers modificada por Wright e a heterose observada no caractere comprimento de panícula, um dos componentes de produtividade do arroz, dos 120 híbridos obtidos nesses cruzamentos
    • …
    corecore