2 research outputs found

    Saliva of laboratory-reared Lutzomyia longipalpis exacerbates Leishmania (Leishmania) amazonensis infection more potently than saliva of wild-caught Lutzomyia longipalpis

    No full text
    In order to compare the saliva effect from wild-caught and lab-reared L. longipalpis on the development of experimental cutaneous leishmaniasis, C57BL/6 mice were inoculated subcutaneously into the hind footpads with promastigotes of L (L.) amazonensis Plus salivary gland lysate from wild-caught (SGL-W) and lab-colonized (SGL-C) vectors. Lesion sizes were significantly larger in the mice infected with both saliva compared to mice infected with parasites alone; moreover, the lesions caused by parasite+SGL-C were significantly larger than the lesions caused by parasite+SGL-W. Histopathological morphometric studies regarding the acute phase of infections showed lower numbers of polymorphonuclear cells, greater numbers of mononuclear cells and parasites in SGL-C infected mice compared to SGL-W infected mice. In the chronic phase of infection, the number of mononuclear cells was lower and the number of parasites was greater in SGL-C infected mice than SGL-W infected mice. In vitro studies showed increased infection index of macrophages infected with parasites plus saliva compared to infection with parasites alone, with no difference between the saliva infection indices. SDS-PAGE gel for SGL-C and SGL-W showed differences in the composition and quantity of protein bands, determined by densitometry. These results call attention to the experimental saliva model, which shows exacerbation of infection caused by sandfly saliva. (C) 2009 Elsevier Ireland Ltd. All rights reserved

    Asymptomatic dogs are highly competent to transmit Leishmania (Leishmania) infantum chagasi to the natural vector

    No full text
    We evaluated the ability of dogs naturally infected with Leishmania (Leishmania) infantum chagasi to transfer the parasite to the vector and the factors associated with transmission. Thirty-eight infected dogs were confirmed to be infected by direct observation of Leishmania in lymph node smears. Dogs were grouped according to external clinical signs and laboratory data into symptomatic (n= 24) and asymptomatic (n= 14) animals. All dogs were sedated and submitted to xenodiagnosis with F1-laboratory-reared Lutzomyia longipalpis. After blood digestion, sand flies were dissected and examined for the presence of promastigotes. Following canine euthanasia, fragments of skin, lymph nodes, and spleen were collected and processed using immunohistochemistry to evaluate tissue parasitism. Specific antibodies were detected using an enzyme-linked immunosorbent assay. Antibody levels were found to be higher in symptomatic dogs compared to asymptomatic dogs (p= 0.0396). Both groups presented amastigotes in lymph nodes, while skin parasitism was observed in only 58.3% of symptomatic and in 35.7% of asymptomatic dogs. Parasites were visualized in the spleens of 66.7% and 71.4% of symptomatic and asymptomatic dogs, respectively. Parasite load varied from mild to intense, and was not significantly different between groups. All asymptomatic dogs except for one (93%) were competent to transmit Leishmania to the vector, including eight (61.5%) without skin parasitism. Sixteen symptomatic animals (67%) infected sand flies; six (37.5%) showed no amastigotes in the skin. Skin parasitism was not crucial for the ability to infect Lutzomyia longipalpis but the presence of Leishmania in lymph nodes was significantly related to a positive xenodiagnosis. Additionally, a higher proportion of infected vectors that fed on asymptomatic dogs was observed (p= 0.0494). Clinical severity was inversely correlated with the infection rate of sand flies (p= 0.027) and was directly correlated with antibody levels (p= 0.0379). Age and gender did not influence the transmissibility. Our data show that asymptomatic dogs are highly infective and competent for establishing sand fly infection, indicating their role in maintaining L. (L.) infantum chagasi cycle as well as their involvement in VL spreading in endemic areas. © 2013 Elsevier B.V
    corecore