225 research outputs found
Characterization and mapping of surface physical properties of Mars from CRISM multi-angular data: application to Gusev Crater and Meridiani Planum
The analysis of the surface texture from the particle (grain size, shape and
internal structure) to its organization (surface roughness) provides
information on the geological processes. CRISM multi-angular observations
(varied emission angles) allow to characterize the surface scattering behavior
which depends on the composition but also the material physical properties
(e.g., grain size, shape, internal structure, the surface roughness). After an
atmospheric correction by the Multi-angle Approach for Retrieval of the Surface
Reflectance from CRISM Observations, the surface reflectances at different
geometries are analyzed by inverting the Hapke photometric model depending on
the single scattering albedo, the 2-term phase function, the macroscopic
roughness and the 2-term opposition effects. Surface photometric maps are
created to observe the spatial variations of surface scattering properties as a
function of geological units at the CRISM spatial resolution (200m/pixel). An
application at the Mars Exploration Rover (MER) landing sites located at Gusev
Crater and Meridiani Planum where orbital and in situ observations are
available, is presented. Complementary orbital observations (e.g. CRISM
spectra, THermal EMission Imaging System, High Resolution Imaging Science
Experiment images) are used for interpreting the estimated Hapke photometric
parameters in terms of physical properties. The in situ observations are used
as ground truth to validate the interpretations. Varied scattering properties
are observed inside a CRISM observation (5x10km) suggesting that the surfaces
are controlled by local geological processes (e.g. volcanic resurfacing,
aeolian and impact processes) rather than regional or global. Consistent
results with the in situ observations are observed thus validating the approach
and the use of photometry for the characterization of Martian surface physical
properties
Dark spots and cold jets in the polar regions of Mars: new clues from a thermal model of surface CO ice
International audienceObservations of the Martian CO ice cap in late winter and spring have revealed exotic phenomena. Unusual dark spots, fans and blotches form as the south-polar seasonal CO ice cap retreats. The formation mechanisms of these features are not clearly understood. Theoretical models suggest that photons could penetrate deep into the CO ice down to the regolith, leading to basal sublimation and gas and dust ejection. We have developed a detailed thermal model able to simulate the temporal evolution of the regolith-CO ice layer-atmosphere column. It takes into account heat conduction, radiative transfer within the ice and the atmosphere, and latent heat exchange when there is a phase transition. We found that a specific algorithm, fully coupling these 3 components, was needed to properly predict ice sublimation below the surface. Our model allows us to determine under what conditions basal sublimation is possible and thus when and where it can occur on Mars. Our results show that basal sublimation is possible if we consider large pathlengths and very little dust content within the ice. Moreover, the model can explain how dark spots can appear very early after the end of the polar night at high latitudes. We also evaluate the importance of the different parameters in our simulations. Contrary to what was suggested by theoretical models, the role of seasonal thermal waves is found to be limited. Solar radiation alone can initiate basal sublimation, which therefore only depends on the CO ice properties. Three main modes were identified: one where condensation/sublimation only occurs at the surface (in the case of small grains and/or high dust content), one where basal sublimation is possible (large pathlengths and very little dust content) and an intermediate mode where sublimation within the ice may occur. We suggest that these different modes could be keys to understanding many processes that occur at the surface of Mars, like the anticryptic area behavior or the recent reported activity in gullies
Material ejection by the cold jets and temperature evolution of the south seasonal polar cap of Mars from THEMIS/CRISM observations and implications for surface properties
As the seasonal CO_2 ice polar caps of Mars retreat during spring, dark spots appear on the ice in some specific regions. These features are thought to result from basal sublimation of the transparent CO_2 ice followed by ejection of regolith-type material, which then covers the ice. We have used Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) reflectance data, Thermal Emission Imaging System (THEMIS) visible images, and THEMIS-derived temperature retrievals along with a thermal numerical model to constrain the physical and compositional characteristics of the seasonal cap for several areas exhibiting dark spots at both high spatial and temporal resolutions. Data analysis suggests an active period of material ejection (before solar longitude (Ls) 200), accumulation around the ejection points, and spreading of part of the ejected material over the whole area, followed by a period where no significant amount of material is ejected, followed by complete defrosting (≈ Ls 245). Dark material thickness on top of the CO_2 ice is estimated to range from a few hundreds of microns to a few millimeters in the warmest spots, based on numerical modeling combined with the observed temperature evolution. The nature of the venting process and the amount of material that is moved lead to the conclusion that it could have an important impact on the surface physical properties
Occupational exposure to solvents and risk of head and neck cancer in women: a population-based case–control study in France
Objective Our objective was to investigate the association between head and neck cancer and occupational exposure to chlorinated, oxygenated and petroleum solvents in women.
Methods Investigation of occupational and environmental CAuses of REspiratory cancers (ICARE), a French population-based case–control study, included 296 squamous cell carcinomas of the head and neck (HNSCC) in women and 775 female controls. Lifelong occupational history was collected. Job-exposure matrices allowed to assess exposure to 5 chlorinated solvents (carbon tetrachloride; chloroform; methylene chloride; perchloroethylene; trichloroethylene), 5 petroleum solvents (benzene; special petroleum product; gasoline; white spirits and other light aromatic mixtures; diesel, fuels and kerosene) and 5 oxygenated solvents (alcohols; ketones and esters; ethylene glycol; diethyl ether; tetrahydrofuran). OR and 95% CIs, adjusted for smoking, alcohol drinking, age and geographical area, were estimated with logistic models.
Results Elevated ORs were observed among women ever exposed to perchloroethylene (OR=2.97, 95% CI 1.05 to 8.45) and trichloroethylene (OR=2.15, 95% CI 1.21 to 3.81). These ORs increased with exposure duration (OR=3.75, 95% CI 0.64 to 21.9 and OR=4.44, 95% CI 1.56 to 12.6 for 10 years or more, respectively). No significantly increased risk of HNSCC was found for occupational exposure to the other chlorinated, petroleum or oxygenated solvents.
Conclusions These findings suggest that exposure to perchloroethylene or trichloroethylene may increase the risk of HNSCC in women. In our study, there is no clear evidence that the other studied solvents are risk factors for HNSCC
Wavelength dependence of scattering properties in the VIS-NIR and links with grain-scale physical and compositional properties
Surface scattered sunlight carries important information about the composition and microtexture of surface materials, thus enabling tracing back the geological and climatic processes that occurred on the planetary body. Here we perform laboratory spectro-goniometric measurements of granular samples (45–75 μm fraction) with different composition and physical properties over the VIS–NIR spectral range (0.4–2.5 μm). To quantify the evolution of the scattering properties over the VIS–NIR, we use an inversion procedure based on a Bayesian approach to estimate photometric parameters from the Hapke radiative transfer model. The granular samples are also carefully characterized by optical and SEM techniques in order to link these scattering variations with the grains’ physical properties. Results show that the scattering properties are wavelength-dependent and can vary significantly over the VIS–NIR spectral range. In particular, the phase function of a granular material is affected by both the absorptivity and the external and internal structure of the grains, from the millimeter scale down to the wavelength scale. Our results also confirm that the macroscopic roughness parameter, as defined by Hapke, is to first order correlated with the absorptivity of the particles, through multiple scattering effects, and thus mostly corresponds to a measurement of the particles shadowing. Photometric datasets, typically obtained at a given wavelength that can vary from one study to another, should therefore be compared and interpreted with caution when extrapolating across wavelengths. Our results also suggest that multi-wavelength photometry could potentially provide a much richer signature than with single-wavelength photometry, opening new perspectives into the characterization of surface materials
Mass wasting triggered by seasonal CO<sub>2</sub> sublimation under Martian atmospheric conditions: Laboratory experiments
Sublimation is a recognized process by which planetary landscapes can be modified. However, interpretation of whether sublimation is involved in downslope movements on Mars and other bodies is restricted by a lack of empirical data to constrain this mechanism of sediment transport and its influence on landform morphology. Here we present the first set of laboratory experiments under Martian atmospheric conditions which demonstrate that the sublimation of CO2 ice from within the sediment body can trigger failure of unconsolidated, regolith slopes and can measurably alter the landscape. Previous theoretical studies required CO2 slab ice for movements, but we find that only frost is required. Hence, sediment transport by CO2 sublimation could be more widely applicable (in space and time) on Mars than previously thought. This supports recent work suggesting CO2 sublimation could be responsible for recent modification in Martian gullies
Formation of gullies on Mars by debris flows triggered by CO_2 sublimation
Martian gully landforms resemble terrestrial debris flows formed by the action of liquid water and have thus been interpreted as evidence for potential habitable environments on Mars within the past few millennia. However, ongoing gully formation has been detected under surface conditions much too cold for liquid water, but at times in the martian year when a thin layer of seasonal CO_2 frost is present and defrosting above the regolith. These observations suggest that the CO_2 condensation–sublimation cycle could play a role in gully formation. Here we use a thermo-physical numerical model of the martian regolith underlying a CO_2 ice layer and atmosphere to show that the pores beneath the ice layer can be filled with CO_2 ice and subjected to extreme pressure variations during the defrosting season. The subsequent gas fluxes can destabilize the regolith material and induce gas-lubricated debris flows with geomorphic characteristics similar to martian gullies. Moreover, we find that subsurface CO_2 ice condensation, sublimation and pressurization occurs at conditions found at latitudes and slope orientations where gullies are observed. We conclude that martian gullies can result from geologic dry ice processes that have no terrestrial analogues and do not require liquid water. Such dry ice processes may have helped shape the evolution of landforms elsewhere on the martian surface
- …