156 research outputs found

    Does vimentin help to delineate the so-called 'basal type breast cancer'?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vimentin is one of the cytoplasmic intermediate filament proteins which are the major component of the cytoskeleton. In our study we checked the usefulness of vimentin expression in identifying cases of breast cancer with poorer prognosis, by adding vimentin to the immunopanel consisting of basal type cytokeratins, estrogen, progesterone, and HER2 receptors.</p> <p>Methods</p> <p>179 tissue specimens of invasive operable ductal breast cancer were assessed by the use of immunohistochemistry. The median follow-up period for censored cases was 90 months.</p> <p>Results</p> <p>38 cases (21.2%) were identified as being vimentin-positive. Vimentin-positive tumours affected younger women (p = 0.024), usually lacked estrogen and progesterone receptor (p < 0.001), more often expressed basal cytokeratins (<0.001), and were high-grade cancers (p < 0.001). Survival analysis showed that vimentin did not help to delineate basal type phenotype in a triple negative (ER, PgR, HER2-negative) group. For patients with 'vimentin or CK5/6, 14, 17-positive' tumours, 5-year estimated survival rate was 78.6%, whereas for patients with 'vimentin, or CK5/6, 14, 17-negative' tumours it was 58.3% (log-rank p = 0.227).</p> <p>Conclusion</p> <p>We were not able to better delineate an immunohistochemical definition of basal type of breast cancer by adding vimentin to the immunopanel consisted of ER, PgR, HER2, CK5/6, 14 and 17 markers, when overall survival was a primary end-point.</p

    Age at Menarche and Time Spent in Education: A Mendelian Randomization Study.

    Get PDF
    Menarche signifies the primary event in female puberty and is associated with changes in self-identity. It is not clear whether earlier puberty causes girls to spend less time in education. Observational studies on this topic are likely to be affected by confounding environmental factors. The Mendelian randomization (MR) approach addresses these issues by using genetic variants (such as single nucleotide polymorphisms, SNPs) as proxies for the risk factor of interest. We use this technique to explore whether there is a causal effect of age at menarche on time spent in education. Instruments and SNP-age at menarche estimates are identified from a Genome Wide Association Study (GWAS) meta-analysis of 182,416 women of European descent. The effects of instruments on time spent in education are estimated using a GWAS meta-analysis of 118,443 women performed by the Social Science Genetic Association Consortium (SSGAC). In our main analysis, we demonstrate a small but statistically significant causal effect of age at menarche on time spent in education: a 1 year increase in age at menarche is associated with 0.14 years (53 days) increase in time spent in education (95% CI 0.10-0.21 years, p = 3.5 × 10-8). The causal effect is confirmed in sensitivity analyses. In identifying this positive causal effect of age at menarche on time spent in education, we offer further insight into the social effects of puberty in girls

    Roadmap on dynamics of molecules and clusters in the gas phase

    Get PDF
    This roadmap article highlights recent advances, challenges and future prospects in studies of the dynamics of molecules and clusters in the gas phase. It comprises nineteen contributions by scientists with leading expertise in complementary experimental and theoretical techniques to probe the dynamics on timescales spanning twenty order of magnitudes, from attoseconds to minutes and beyond, and for systems ranging in complexity from the smallest (diatomic) molecules to clusters and nanoparticles. Combining some of these techniques opens up new avenues to unravel hitherto unexplored reaction pathways and mechanisms, and to establish their significance in, e.g. radiotherapy and radiation damage on the nanoscale, astrophysics, astrochemistry and atmospheric science

    Osteon Pullout in the Equine Third Metacarpal Bone: Effects of Ex Vivo Fatigue

    Get PDF
    An important concept in bone mechanics is that osteons influence mechanical properties in several ways, including contributing to toughness and fatigue strength by debonding from the interstitial matrix so as to bridge developing cracks. Observations of pulled out osteons on fracture surfaces are thought to be indicative of such behavior. We tested the hypothesis that osteon pullout varies with mode of loading (fatigue vs. monotonic), cortical region, elastic modulus, and fatigue life. Mid-diaphseal beams from the dorsal, medial, and lateral regions of the equine third metacarpal bone were fractured in four point bending by monotonic loading to failure under deflection control, with or without 1 05 cycles of previous fatigue loading producing 5000 microstrain (15-20% of the expected failure strain) on the first cycle; or sinusoidal fatigue loading to failure, under load or deflection control, with the initial cycle producing 10,000 microstrain (30-40% of the expected failure strain). Using scanning electron microscopy, percent fracture surface area exhibiting osteon pullout (%OP.Ar) was measured. Monotonically loaded specimens and the compression side of fa-tigue fracture surfaces exhibited no osteon pullout. In load-controlled fatigue, pullout was present on the tension side of fracture surfaces, was regionally dependent (occurring to a greater amount dorsally), and was correlated negatively with elastic modulus and positively with fatigue life. Regional variation in %OP.Ar was also significant for the pooled (load and deflection controlled) fatigue specimens. %OP.Ar was nearly significantly greater in deflection controlled fatigue specimens than in load-controlled specimens (p=0.059). The data suggest that tensile fatigue loading of cortical bone eventually introduces damage that results in osteonal debonding and pullout, which is also associated with increased fatigue life via mechanisms that are not yet clear
    corecore