9 research outputs found
Two classes of nonlocal Evolution Equations related by a shared Traveling Wave Problem
We consider reaction-diffusion equations and Korteweg-de Vries-Burgers (KdVB)
equations, i.e. scalar conservation laws with diffusive-dispersive
regularization. We review the existence of traveling wave solutions for these
two classes of evolution equations. For classical equations the traveling wave
problem (TWP) for a local KdVB equation can be identified with the TWP for a
reaction-diffusion equation. In this article we study this relationship for
these two classes of evolution equations with nonlocal diffusion/dispersion.
This connection is especially useful, if the TW equation is not studied
directly, but the existence of a TWS is proven using one of the evolution
equations instead. Finally, we present three models from fluid dynamics and
discuss the TWP via its link to associated reaction-diffusion equations
