1,288 research outputs found

    Presynaptic partner selection during retinal circuit reassembly varies with timing of neuronal regeneration in vivo

    Get PDF
    Whether neurons can restore their original connectivity patterns during circuit repair is unclear. Taking advantage of the regenerative capacity of zebrafish retina, we show here the remarkable specificity by which surviving neurons reassemble their connectivity upon regeneration of their major input. H3 horizontal cells (HCs) normally avoid red and green cones, and prefer ultraviolet over blue cones. Upon ablation of the major (ultraviolet) input, H3 HCs do not immediately increase connectivity with other cone types. Instead, H3 dendrites retract and re-extend to contact new ultraviolet cones. But, if regeneration is delayed or absent, blue-cone synaptogenesis increases and ectopic synapses are made with red and green cones. Thus, cues directing synapse specificity can be maintained following input loss, but only within a limited time period. Further, we postulate that signals from the major input that shape the H3 HC's wiring pattern during development persist to restrict miswiring after damage

    Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice.

    Get PDF
    To gain insight into how mutant huntingtin (mHtt) CAG repeat length modifies Huntington's disease (HD) pathogenesis, we profiled mRNA in over 600 brain and peripheral tissue samples from HD knock-in mice with increasing CAG repeat lengths. We found repeat length-dependent transcriptional signatures to be prominent in the striatum, less so in cortex, and minimal in the liver. Coexpression network analyses revealed 13 striatal and 5 cortical modules that correlated highly with CAG length and age, and that were preserved in HD models and sometimes in patients. Top striatal modules implicated mHtt CAG length and age in graded impairment in the expression of identity genes for striatal medium spiny neurons and in dysregulation of cyclic AMP signaling, cell death and protocadherin genes. We used proteomics to confirm 790 genes and 5 striatal modules with CAG length-dependent dysregulation at the protein level, and validated 22 striatal module genes as modifiers of mHtt toxicities in vivo

    The Impact of Acute Psychosocial Stress on Magnetoencephalographic Correlates of Emotional Attention and Exogenous Visual Attention

    Get PDF
    Stress-induced acute activation of the cerebral catecholaminergic systems has often been found in rodents. However, little is known regarding the consequences of this activation on higher cognitive functions in humans. Theoretical inferences would suggest increased distractibility in the sense of increased exogenous attention and emotional attention. The present study investigated the influence of acute stress responses on magnetoencephalographic (MEG) correlates of visual attention. Healthy male subjects were presented emotional and neutral pictures in three subsequent MEG recording sessions after being exposed to a TSST-like social stressor, intended to trigger a HPA-response. The subjects anticipation of another follow-up stressor was designed to sustain the short-lived central catecholaminergic stress reactions throughout the ongoing MEG recordings. The heart rate indicates a stable level of anticipatory stress during this time span, subsequent cortisol concentrations and self-report measures of stress were increased. With regard to the MEG correlates of attentional functions, we found that the N1m amplitude remained constantly elevated during stressor anticipation. The magnetic early posterior negativity (EPNm) was present but, surprisingly, was not at all modulated during stressor anticipation. This suggests that a general increase of the influence of exogenous attention but no specific effect regarding emotional attention in this time interval. Regarding the time course of the effects, an influence of the HPA on these MEG correlates of attention seems less likely. An influence of cerebral catecholaminergic systems is plausible, but not definite

    Variational Methods for Biomolecular Modeling

    Full text link
    Structure, function and dynamics of many biomolecular systems can be characterized by the energetic variational principle and the corresponding systems of partial differential equations (PDEs). This principle allows us to focus on the identification of essential energetic components, the optimal parametrization of energies, and the efficient computational implementation of energy variation or minimization. Given the fact that complex biomolecular systems are structurally non-uniform and their interactions occur through contact interfaces, their free energies are associated with various interfaces as well, such as solute-solvent interface, molecular binding interface, lipid domain interface, and membrane surfaces. This fact motivates the inclusion of interface geometry, particular its curvatures, to the parametrization of free energies. Applications of such interface geometry based energetic variational principles are illustrated through three concrete topics: the multiscale modeling of biomolecular electrostatics and solvation that includes the curvature energy of the molecular surface, the formation of microdomains on lipid membrane due to the geometric and molecular mechanics at the lipid interface, and the mean curvature driven protein localization on membrane surfaces. By further implicitly representing the interface using a phase field function over the entire domain, one can simulate the dynamics of the interface and the corresponding energy variation by evolving the phase field function, achieving significant reduction of the number of degrees of freedom and computational complexity. Strategies for improving the efficiency of computational implementations and for extending applications to coarse-graining or multiscale molecular simulations are outlined.Comment: 36 page

    Use of antibiotic spacers for knee endoprosthesis infections treatment

    Get PDF
    OBJCTIVE: The aim of this study is to evaluate the use of cement spacers impregnated with antibiotics for the treatment of infections in the nonconventional endoprostheses of the knee. METHODOLOGY: We have treated seven patients since 2004 (of which six were submitted to surgery in our service and one patient had been submitted to a primary tumor surgery in another removal service) with deep infection in knee tumor prosthesis. All patients were submitted to endoprosthesis removal and reconstructed with antibiotic cement spacer. All patients were monitored both clinically and by lab tests as for monitoring the evolution, being considered able for reviews after 6 (six) months without infections signs. RESULTS: We have noted a small predominance of infectious processes on the prosthesis inserted on proximal tibia as compared with distal femur (57.1% x 42.9%). The mean follow-up time of patients was 68.2 months. During the follow up, one patient died as a result of the root disease. Six patients out of seven were regarded as cured and one persisted with infection signs and symptoms. CONCLUSION: The results obtained up to date have motivated us to continue using this method of treatment.OBJETIVO: O objetivo do estudo é avaliar a utilização dos espaçadores de cimento acrílico com antibiótico no tratamento das infecções em endopróteses não convencionais de joelho. MÉTODO: Desde de 2004 foram tratados sete pacientes (seis pacientes operados no nosso serviço e um paciente que havia sido submetido a cirurgia primária do tumor em outro serviço) com infecção peri-endoprótese não convencional de joelho. Todos pacientes foram submetidos a retirada da endoprótese e reconstrução com espaçador com cimento acrílico com antibiótico. Todos os pacientes foram monitorados clínica e laboratorialmente quanto ao controle da evolução, sendo considerados aptos para a revisão e recolocação de endoprótese após 06 (seis) meses sem sinais infecciosos RESULTADOS: Notamos um discreto predomínio do do processo infeccioso nas próteses realizadas na tíbia proximal em comparação com o fêmur distal (57,1% x 42,9%). O seguimento médio dos pacientes foi 68,2 meses. Durante o seguimento, um paciente faleceu devido a doença de base. Dos sete pacientes, 6 foram considerados curados e um persistiu com sinais e sintomas de infecção. CONCLUSÃO: Os resultados obtidos até o momento tem motivado a continuidade deste método de tratamento.Universidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Departamento de Ortopedia e TraumatologiaUNIFESP, EPM, Depto. de Ortopedia e TraumatologiaSciEL

    Representation of cognitive reappraisal goals in frontal gamma oscillations

    Get PDF
    Recently, numerous efforts have been made to understand the neural mechanisms underlying cognitive regulation of emotion, such as cognitive reappraisal. Many studies have reported that cognitive control of emotion induces increases in neural activity of the control system, including the prefrontal cortex and the dorsal anterior cingulate cortex, and increases or decreases (depending upon the regulation goal) in neural activity of the appraisal system, including the amygdala and the insula. It has been hypothesized that information about regulation goals needs to be processed through interactions between the control and appraisal systems in order to support cognitive reappraisal. However, how this information is represented in the dynamics of cortical activity remains largely unknown. To address this, we investigated temporal changes in gamma band activity (35-55 Hz) in human electroencephalograms during a cognitive reappraisal task that was comprised of three reappraisal goals: To decease, maintain, or increase emotional responses modulated by affect-laden pictures. We examined how the characteristics of gamma oscillations, such as spectral power and large-scale phase synchronization, represented cognitive reappraisal goals. We found that left frontal gamma power decreased, was sustained, or increased when the participants suppressed, maintained, or amplified their emotions, respectively. This change in left frontal gamma power appeared during an interval of 1926 to 2453 ms after stimulus onset. We also found that the number of phase-synchronized pairs of gamma oscillations over the entire brain increased when participants regulated their emotions compared to when they maintained their emotions. These results suggest that left frontal gamma power may reflect cortical representation of emotional states modulated by cognitive reappraisal goals and gamma phase synchronization across whole brain regions may reflect emotional regulatory efforts to achieve these goals. Our study may provide the basis for an electroencephalogram-based neurofeedback system for the cognitive regulation of emotion.open0

    Lack of cortico-limbic coupling in bipolar disorder and schizophrenia during emotion regulation

    Get PDF
    Bipolar disorder (BD) and schizophrenia (Sz) share dysfunction in prefrontal inhibitory brain systems, yet exhibit distinct forms of affective disturbance. We aimed to distinguish these disorders on the basis of differential activation in cortico-limbic pathways during voluntary emotion regulation. Patients with DSM-IV diagnosed Sz (12) or BD-I (13) and 15 healthy control (HC) participants performed a well-established emotion regulation task while undergoing functional magnetic resonance imaging. The task required participants to voluntarily upregulate or downregulate their subjective affect while viewing emotionally negative images or maintain their affective response as a comparison condition. In BD, abnormal overactivity (hyperactivation) occurred in the right ventrolateral prefrontal cortex (VLPFC) during up- and downregulation of negative affect, relative to HC. Among Sz, prefrontal hypoactivation of the right VLPFC occurred during downregulation (opposite to BD), whereas upregulation elicited hyperactivity in the right VLPFC similar to BD. Amygdala activity was significantly related to subjective negative affect in HC and BD, but not Sz. Furthermore, amygdala activity was inversely coupled with the activity in the left PFC during downregulation in HC (r=−0.76), while such coupling did not occur in BD or Sz. These preliminary results indicate that differential cortico-limbic activation can distinguish the clinical groups in line with affective disturbance: BD is characterized by ineffective cortical control over limbic regions during emotion regulation, while Sz is characterized by an apparent failure to engage cortical (hypofrontality) and limbic regions during downregulation

    Pleosporales

    Get PDF
    One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae
    corecore