38 research outputs found

    The real field with an irrational power function and a dense multiplicative subgroup

    Full text link
    This paper provides a first example of a model theoretically well behaved structure consisting of a proper o-minimal expansion of the real field and a dense multiplicative subgroup of finite rank. Under certain Schanuel conditions, a quantifier elimination result will be shown for the real field with an irrational power function and a dense multiplicative subgroup of finite rank whose elements are algebraic over the field generated by the irrational power. Moreover, every open set definable in this structure is already definable in the reduct given by just the real field and the irrational power function

    Interpreting the projective hierarchy in expansions of the real line

    Full text link
    We give a criterion when an expansion of the ordered set of real numbers defines the image of the expansion of the real field by the set of natural numbers under a semialgebraic injection. In particular, we show that for a non-quadratic irrational number a, the expansion of the ordered Q(a)-vector space of real numbers by the set of natural numbers defines multiplication on the real numbers
    corecore