2 research outputs found
-self-adjoint operators with -symmetries: extension theory approach
A well known tool in conventional (von Neumann) quantum mechanics is the
self-adjoint extension technique for symmetric operators. It is used, e.g., for
the construction of Dirac-Hermitian Hamiltonians with point-interaction
potentials. Here we reshape this technique to allow for the construction of
pseudo-Hermitian (-self-adjoint) Hamiltonians with complex
point-interactions. We demonstrate that the resulting Hamiltonians are
bijectively related with so called hypermaximal neutral subspaces of the defect
Krein space of the symmetric operator. This symmetric operator is allowed to
have arbitrary but equal deficiency indices . General properties of the
$\cC$ operators for these Hamiltonians are derived. A detailed study of
$\cC$-operator parametrizations and Krein type resolvent formulas is provided
for $J$-self-adjoint extensions of symmetric operators with deficiency indices
. The technique is exemplified on 1D pseudo-Hermitian Schr\"odinger and
Dirac Hamiltonians with complex point-interaction potentials
Operator (quasi-)similarity, quasi-hermitian operators and all that
Motivated by the recent developments of pseudo-Hermitian quantum mechanics, we analyze the structure generated by unbounded metric operators in a Hilbert space. To that effect, we consider the notions of similarity and quasi-similarity between operators and explore to what extent they preserve spectral properties. Then we study quasi-Hermitian operators, bounded or not, that is, operators that are quasisimilar to their adjoint and we discuss their application in pseudo-Hermitian quantum mechanics. Finally, we extend the analysis to operators in a partial inner product space (pip-space), in particular the scale of Hilbert space s generated by a single unbounded metric operator
