16 research outputs found

    A New View of the Circumstellar Environment of SN 1987A

    Full text link
    We summarize the analysis of a uniform set of both previously-known and newly-discovered scattered-light echoes, detected within 30" of SN 1987A in ten years of optical imaging, and with which we have constructed the most complete three-dimensional model of the progenitor's circumstellar environment. Surrounding the SN is a richly-structured bipolar nebula. An outer, double-lobed ``peanut,'' which we believe is the contact discontinuity between the red supergiant and main sequence winds, is a prolate shell extending 28 ly along the poles and 11 ly near the equator. Napoleon's Hat, previously believed to be an independent structure, is the waist of this peanut, which is pinched to a radius of 6 ly. Interior, the innermost circumstellar material lies along a cylindrical hourglass, 1 ly in radius and 4 ly long, which connects to the peanut by a thick equatorial disk. The nebulae are inclined 41o south and 8o east of the line of sight, slightly elliptical in cross section, and marginally offset west of the SN. The 3-D geometry of the three circumstellar rings is studied, suggesting the equatorial ring is elliptical (b/a<0.98), and spatially offset in the same direction as the hourglass. Dust-scattering models suggest that between the hourglass and bipolar lobes: the gas density drops from 1--3 cm^{-3} to >0.03 cm^{-3}; the maximum dust-grain size increases from ~0.2 micron to 2 micron; and the Si:C dust ratio decreases. The nebulae have a total mass of ~1.7 Msun, yielding a red-supergiant mass loss around 5*10^{-6} Msun yr^{-1}.Comment: Accepted for publication in ApJ 2/14/05. 16 pages in emualteapj forma

    On the formation and evolution of black-hole binaries

    Get PDF
    We present the results of a systematic study of the formation and evolution of binaries containing black holes and normal-star companions with a wide range of masses. We first reexamine the standard formation scenario for close black-hole binaries, where the spiral-in of the companion in the envelope of a massive star causes the ejection of the envelope. We estimate the formation rates for different companion masses and different assumptions about the common-envelope structure and other model parameters. We find that black-hole binaries with intermediate- and high-mass secondaries can form for a wide range of assumptions, while black-hole binaries with low-mass secondaries can only form with apparently unrealistic assumptions (in agreement with previous studies). We then present detailed binary evolution sequences for black-hole binaries with secondaries of 2 to 17 Msun and demonstrate that in these systems the black hole can accrete appreciably even if accretion is Eddington limited (up to 7 Msun for an initial black-hole mass of 10 Msun) and that the black holes can be spun up significantly in the process. We discuss the implications of these calculations for well-studied black-hole binaries (in particular GRS 1915+105), ultra-luminous X-ray sources and Cygnus X-1. Finally, we discuss how some of the assumptions in the standard model could be relaxed to allow the formation of low-mass, short-period black-hole binaries which appear to be very abundant in Nature. (Abstract abridged)Comment: 21 pages, 9 figures, accepted by MNRAS, Figs. 2a/2b and 5 in very reduced forma

    Progressive vertebral deformities despite unchanged bone mineral density in patients with sarcoidosis: a 4-year follow-up study

    Get PDF
    To evaluate the incidence of new and/or progressive vertebral deformities and changes in bone mineral density, we re-examined 66 patients with sarcoidosis after a follow-up period of four years. In 17 subjects (26%) new and/or progressive vertebral deformities were found, though BMD did not change significantly. INTRODUCTION: Previous studies from our group have shown that morphometric vertebral deformities suggestive of fractures can be found in 20% of patients with sarcoidosis, despite a normal bone mineral density (BMD). The aim of this study was to determine the incidence of new and/or progressive vertebral deformities and the evolution of BMD during the course of this disease. METHODS: BMD of the hip (DXA) and vertebral fracture assessment (VFA) with lateral single energy densitometry was performed at baseline and after 45 months in 66 patients with sarcoidosis. Potential predictors of new/ progressive vertebral deformities were assessed using logistic regression analysis. RESULTS: The BMD of the total group was unchanged after follow-up. The prevalence of vertebral deformities increased from 20 to 32% (p < 0.05); in 17 subjects (26%) new or progressive vertebral deformities were diagnosed. A lower T-score of the femoral neck [(OR = 2.5 (CI: 1.0-5.9), p < 0.05)] and mother with a hip fracture [(OR = 14.1 (CI: 1.4-142.6), p < 0.05)] were independent predictors of new/progressive deformities. CONCLUSIONS: In subjects with sarcoidosis the number of vertebral deformities increases in the course of this disease, despite unchanged BMD. The combination of low normal BMD and family history of fragility fractures confers an increased risk of the incidence of these deformities

    The yellow hypergiant HR 5171 A: Resolving a massive interacting binary in the common envelope phase

    Get PDF
    Context. Only a few stars are caught in the very brief and often crucial stages when they quickly traverse the Hertzsprung-Russell diagram, and none has yet been spatially resolved in the mass transfer phase. Aims: We initiated long-term optical interferometry monitoring of the diameters of massive and unstable yellow hypergiants (YHG) with the goal of detecting both the long-term evolution of their radius and shorter term formation of a possible pseudo-photosphere related to proposed large mass-loss events. Methods: We observed HR 5171 A with AMBER/VLTI. We also examined archival photometric data in the visual and near-IR spanning more than 60 years, as well as sparse spectroscopic data. Results: HR 5171 Aexhibits a complex appearance. Our AMBER data reveal a surprisingly large star for a YHG R∗ = 1315 ± 260R⊙ (or ~6.1 AU) at the distance of 3.6 ± 0.5 kpc. The source is surrounded by an extended nebulosity, and these data also show a large level of asymmetry in the brightness distribution of the system, which we attribute to a newly discovered companion star located in front of the primary star. The companion's signature is also detected in the visual photometry, which indicates an orbital period of Porb = 1304 ± 6 d. Modeling the light curve with the NIGHTFALL program provides clear evidence that the system is a contact or possibly over-contact eclipsing binary. A total current system mass of 39^+40_-22 M⊙ and a high mass ratio q ≥ 10 is inferred for the system. Conclusions: The low-mass companion of HR 5171 is very close to the primary star that is embedded within its dense wind. Tight constraints on the inclination and vsini of the primary are lacking, which prevents us from determining its influence precisely on the mass-loss phenomenon, but the system is probably experiencing a wind Roche-Lobe overflow. Depending on the amount of angular momentum that can be transferred to the stellar envelope, HR 5171 A may become a fast-rotating B[e]/luminous blue variable/Wolf-Rayet star. In any case, HR 5171 A highlights the possible importance of binaries for interpreting the unstable YHGs and for massive star evolution in general

    Microbial population analysis of nutrient removal-related organisms in membrane bioreactors

    No full text
    Membrane bioreactors (MBR) are an important and increasingly implemented wastewater treatment technology, which are operated at low food to microorganism ratios (F/M) and retain slow-growing organisms. Enhanced biological phosphorus removal (EBPR)-related organisms grow slower than ordinary heterotrophs, but have never been studied in detail in MBRs. This study presents a comprehensive analysis of the microorganisms involved in EBPR in pilot- and full-scale MBRs, using fluorescence in situ hybridization (FISH), as well as an overall assessment of other relevant microbial groups. The results showed that polyphosphate accumulating organisms (PAOs) were present at similar levels in all studied MBRs (10%±6%), even those without a defined anaerobic zone. Glycogen accumulating organisms were also detected, although rarely. The FISH results correlated well with the observed P removal performance of each plant. The results from this study suggest that a defined anaerobic zone is not necessarily required for putative PAO growth in MBRs, since polyphosphate storage may provide a selective advantage in fulfilling cell maintenance requirements in substrate-limited conditions (low F/M).Water ManagementCivil Engineering and Geoscience
    corecore