27 research outputs found

    PILOT: a balloon-borne experiment to measure the polarized FIR emission of dust grains in the interstellar medium

    Full text link
    Future cosmology space missions will concentrate on measuring the polarization of the Cosmic Microwave Background, which potentially carries invaluable information about the earliest phases of the evolution of our universe. Such ambitious projects will ultimately be limited by the sensitivity of the instrument and by the accuracy at which polarized foreground emission from our own Galaxy can be subtracted out. We present the PILOT balloon project which will aim at characterizing one of these foreground sources, the polarization of the dust continuum emission in the diffuse interstellar medium. The PILOT experiment will also constitute a test-bed for using multiplexed bolometer arrays for polarization measurements. We present the results of ground tests obtained just before the first flight of the instrument.Comment: 17 pages, 13 figures. Presented at SPIE, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. To be published in Proc. SPIE volume 915

    Pilot optical alignment

    Full text link
    PILOT (Polarized Instrument for Long wavelength Observations of the Tenuous interstellar medium) is a balloonborne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy. The PILOT instrument allows observations at wavelengths 240 ÎŒm (1.2THz) with an angular resolution about two arc-minutes. The observations performed during the first flight in September 2015 at Timmins, Ontario Canada, have demonstrated the optical performances of the instrument

    EUSO-BALLOON a pathfinder for detecting UHECR's from the edge of space

    No full text
    EUSO-Balloon has been conceived as a pathfinder mission for JEM-EUSO, to perform an end-to-end test of the subsystems and components, and to prove the global detection chain while improving our knowledge of the atmospheric and terrestrial UV background. Through a series of stratospheric balloon flights performed by the French Space Agency CNES, EUSO-BALLOON will serve as an evolutive test-bench for all the key technologies of JEM-EUSO. EUSO-Balloon also has the potential to detect Extensive Air Showers from above, marking a key milestone in the development of UHECR science, and paving the way for any future large scale, space-based UHECR observatory

    Performance of the polarization leakage correction in the PILOT data

    No full text
    The Polarized Instrument for Long-wavelength Observation of the Tenuous interstellar medium (PILOT) is a balloon-borne experiment that aims to measure the polarized emission of thermal dust at a wavelength of 240 um (1.2 THz). The PILOT experiment flew from Timmins, Ontario, Canada in 2015 and 2019 and from Alice Springs, Australia in April 2017. The in-flight performance of the instrument during the second flight was described in Mangilli et al. 2019. In this paper, we present data processing steps that were not presented in Mangilli et al. 2019 and that we have recently implemented to correct for several remaining instrumental effects. The additional data processing concerns corrections related to detector cross-talk and readout circuit memory effects, and leakage from total intensity to polarization. We illustrate the above effects and the performance of our corrections using data obtained during the third flight of PILOT, but the methods used to assess the impact of these effects on the final science-ready data, and our strategies for correcting them will be applied to all PILOT data. We show that the above corrections, and in particular that for the intensity to polarization leakage, which is most critical for accurate polarization measurements with PILOT, are accurate to better than 0.4 % as measured on Jupiter during flight#3

    Performance of the polarization leakage correction in the PILOT data

    No full text
    The Polarized Instrument for Long-wavelength Observation of the Tenuous interstellar medium (PILOT) is a balloon-borne experiment that aims to measure the polarized emission of thermal dust at a wavelength of 240 um (1.2 THz). The PILOT experiment flew from Timmins, Ontario, Canada in 2015 and 2019 and from Alice Springs, Australia in April 2017. The in-flight performance of the instrument during the second flight was described in Mangilli et al. 2019. In this paper, we present data processing steps that were not presented in Mangilli et al. 2019 and that we have recently implemented to correct for several remaining instrumental effects. The additional data processing concerns corrections related to detector cross-talk and readout circuit memory effects, and leakage from total intensity to polarization. We illustrate the above effects and the performance of our corrections using data obtained during the third flight of PILOT, but the methods used to assess the impact of these effects on the final science-ready data, and our strategies for correcting them will be applied to all PILOT data. We show that the above corrections, and in particular that for the intensity to polarization leakage, which is most critical for accurate polarization measurements with PILOT, are accurate to better than 0.4 % as measured on Jupiter during flight#3
    corecore