168 research outputs found

    Unexpected Scaling of the Performance of Carbon Nanotube Transistors

    Full text link
    We show that carbon nanotube transistors exhibit scaling that is qualitatively different than conventional transistors. The performance depends in an unexpected way on both the thickness and the dielectric constant of the gate oxide. Experimental measurements and theoretical calculations provide a consistent understanding of the scaling, which reflects the very different device physics of a Schottky barrier transistor with a quasi-one-dimensional channel contacting a sharp edge. A simple analytic model gives explicit scaling expressions for key device parameters such as subthreshold slope, turn-on voltage, and transconductance.Comment: 4 pages, 4 figure

    Variability in conditioned pain modulation predicts response to NSAID treatment in patients with knee osteoarthritis

    Get PDF
    Background: Patients with painful knee osteoarthritis (OA) demonstrate hyperalgesia and altered pain-modulatory responses. While some prior work has demonstrated cross-sectional associations between laboratory and clinical pain measures, it is unknown whether individual variability in quantitative sensory testing (QST) responses at baseline can prospectively predict analgesic treatment responses. Method: Patients with knee OA (n = 35) were compared on QST responses to a demographically-matched pain-free control group (n = 39), after which patients completed a month-long treatment study of diclofenac sodium topical gel (1 %), applied up to 4 times daily. Results: OA patients demonstrated reduced pain thresholds at multiple anatomic sites, as well as reduced conditioned pain modulation (CPM) and enhanced temporal summation of pain. The most pain-sensitive patients tended to report the most intense and neuropathic OA pain. Following diclofenac treatment, the knee OA cohort showed a roughly 30 % improvement in pain, regardless of the presence or absence of neuropathic symptoms. Baseline CPM scores, an index of endogenous pain-inhibitory capacity, were prospectively associated with treatment-related changes in clinical pain. Specifically, participants with higher CPM at baseline (i.e., better functioning endogenous pain-inhibitory systems) showed more reduction in pain at the end of treatment (p < .05). Conclusions: These results support prior findings of amplified pain sensitivity and reduced pain-inhibition in OA patients. Moreover, the moderate to strong associations between laboratory-based measures of pain sensitivity and indices of clinical pain highlight the clinical relevance of QST in this sample. Finally, the prospective association between CPM and diclofenac response suggests that QST-based phenotyping may have utility in explaining inter-patient variability in long-term analgesic treatment outcomes. Trial registration: ClinicalTrials.Gov Identifier: NCT01383954. Registered June 22, 2011

    Carbon Nanotubes as Schottky Barrier Transistors

    Full text link
    We show that carbon nanotube transistors operate as unconventional "Schottky barrier transistors", in which transistor action occurs primarily by varying the contact resistance rather than the channel conductance. Transistor characteristics are calculated for both idealized and realistic geometries, and scaling behavior is demonstrated. Our results explain a variety of experimental observations, including the quite different effects of doping and adsorbed gases. The electrode geometry is shown to be crucial for good device performance.Comment: 4 pages, 5 figures, appears in Physical Review Letter

    A liquid Xenon Positron Emission Tomograph for small animal imaging : first experimental results of a prototype cell

    Full text link
    A detector using liquid Xenon (LXe) in the scintillation mode is studied for Positron Emission Tomography (PET) of small animals. Its specific design aims at taking full advantage of the Liquid Xenon scintillation properties. This paper reports on energy, time and spatial resolution capabilities of the first LXe prototype module equipped with a Position Sensitive Photo- Multiplier tube (PSPMT) operating in the VUV range (178 nm) and at 165 K. The experimental results show that such a LXe PET configuration might be a promising solution insensitive to any parallax effect.Comment: 34 pages, 18 pages, to appear in NIM

    Single- and multi-wall carbon nanotube field-effect transistors

    Get PDF
    We fabricated field-effect transistors based on individual single- and multi-wall carbon nanotubes and analyzed their performance. Transport through the nanotubes is dominated by holes and, at room temperature, it appears to be diffusive rather than ballistic. By varying the gate voltage, we successfully modulated the conductance of a single-wall device by more than 5 orders of magnitude. Multi-wall nanotubes show typically no gate effect, but structural deformations—in our case a collapsed tube—can make them operate as field-effect transistors

    Lateral scaling in carbon nanotube field-effect transistors

    Full text link
    We have fabricated carbon nanotube (CN) field-effect transistors with multiple, individually addressable gate segments. The devices exhibit markedly different transistor characteristics when switched using gate segments controlling the device interior versus those near the source and drain. We ascribe this difference to a change from Schottky barrier modulation at the contacts to bulk switching. We also find that the current through the bulk portion is independent of gate length for any gate voltage, offering direct evidence for ballistic transport in semiconducting CNs over at least a few hundred nanometers, even for relatively small carrier velocities.Comment: 4 pages, 4 figure

    Field-effect transistors assembled from functionalized carbon nanotubes

    Full text link
    We have fabricated field effect transistors from carbon nanotubes using a novel selective placement scheme. We use carbon nanotubes that are covalently bound to molecules containing hydroxamic acid functionality. The functionalized nanotubes bind strongly to basic metal oxide surfaces, but not to silicon dioxide. Upon annealing, the functionalization is removed, restoring the electronic properties of the nanotubes. The devices we have fabricated show excellent electrical characteristics.Comment: 5 pages, 6 figure

    Endovascular coils as lung tumour markers in real-time tumour tracking stereotactic radiotherapy: preliminary results

    Get PDF
    To evaluate the use of endovascular coils as markers for respiratory motion correction during high-dose stereotactic radiotherapy with the CyberKnife, an image-guided linear accelerator mounted on a robotic arm. Endovascular platinum embolisation coils were used to mark intrapulmonary lesions. The coils were placed in subsegmental pulmonary artery branches in close proximity to the target tumour. This procedure was attempted in 25 patients who were considered unsuitable candidates for standard transthoracic percutaneous insertion. Vascular coils (n = 87) were succesfully inserted in 23 of 25 patients. Only minor complications were observed: haemoptysis during the procedure (one patient), development of pleural pain and fever on the day of procedure (one patient), and development of small infiltrative changes distal to the vascular coil (five patients). Fifty-seven coils (66% of total inserted number) could be used as tumour markers for delivery of biologically highly effective radiation doses with automated tracking during CyberKnife radiotherapy. Endovascular markers are safe and allow high-dose radiotherapy of lung tumours with CyberKnife, also in patients who are unsuitable candidates for standard transthoracic percutaneous marker insertion
    • …
    corecore