407 research outputs found

    Finding Crush: Environmental DNA Analysis as a Tool for Tracking the Green Sea Turtle Chelonia mydas in a Marine Estuary

    Get PDF
    Environmental DNA (eDNA) analysis is a rapid, non-invasive method for species detection and distribution assessment using DNA released into the surrounding environment by an organism. eDNA analysis is recognised as a powerful tool for detecting endangered or rare species in a range of ecosystems. Although the number of studies using eDNA analysis in marine systems is continually increasing, there appears to be no published studies investigating the use of eDNA analysis to detect sea turtles in natural conditions. We tested the efficacy of two primer pairs known to amplify DNA fragments of differing lengths (488 and 253 bp) from Chelonia mydas tissues for detecting C. mydas eDNA in water samples. The capture, extraction, and amplification of C. mydas eDNA from aquaria (Sea World, San Diego, CA, United States) and natural water (San Diego Bay, CA, United States) were successful using either primer set. The primer pair providing the shorter amplicon, LCMint2/H950g, demonstrated the ability to distinguish cross-reactive species by melt curve analysis and provided superior amplification metrics compared to the other primer set (LTCM2/HDCM2); although primer dimer was observed, warranting future design refinement. Results indicated that water samples taken from deeper depths might improve detection frequency, consistent with C. mydas behaviour. Overall, this pilot study suggests that with refinement of sampling methodology and further assay optimisation, eDNA analysis represents a promising tool to monitor C. mydas. Potential applications include rapid assessment across broad geographical areas to pinpoint promising locations for further evaluation with traditional methods

    H-Ras Nanocluster Stability Regulates the Magnitude of MAPK Signal Output

    Get PDF
    H-Ras is a binary switch that is activated by multiple co-factors and triggers several key cellular pathways one of which is MAPK. The specificity and magnitude of downstream activation is achieved by the spatio-temporal organization of the active H-Ras in the plasma membrane. Upon activation, the GTP bound H-Ras binds to Galectin-1 (Gal-1) and becomes transiently immobilized in short-lived nanoclusters on the plasma membrane from which the signal is propagated to Raf. In the current study we show that stabilizing the H-Ras-Gal-1 interaction, using bimolecular fluorescence complementation (BiFC), leads to prolonged immobilization of H-Ras.GTP in the plasma membrane which was measured by fluorescence recovery after photobleaching (FRAP), and increased signal out-put to the MAPK module. EM measurements of Raf recruitment to the H-Ras.GTP nanoclusters demonstrated that the enhanced signaling observed in the BiFC stabilized H-Ras.GTP nanocluster was attributed to increased H-Ras immobilization rather than to an increase in Raf recruitment. Taken together these data demonstrate that the magnitude of the signal output from a GTP-bound H-Ras nanocluster is proportional to its stability

    Vitamin D supplementation and breast cancer prevention : a systematic review and meta-analysis of randomized clinical trials

    Get PDF
    In recent years, the scientific evidence linking vitamin D status or supplementation to breast cancer has grown notably. To investigate the role of vitamin D supplementation on breast cancer incidence, we conducted a systematic review and meta-analysis of randomized controlled trials comparing vitamin D with placebo or no treatment. We used OVID to search MEDLINE (R), EMBASE and CENTRAL until April 2012. We screened the reference lists of included studies and used the “Related Article” feature in PubMed to identify additional articles. No language restrictions were applied. Two reviewers independently extracted data on methodological quality, participants, intervention, comparison and outcomes. Risk Ratios and 95% Confident Intervals for breast cancer were pooled using a random-effects model. Heterogeneity was assessed using the I2 test. In sensitivity analysis, we assessed the impact of vitamin D dosage and mode of administration on treatment effects. Only two randomized controlled trials fulfilled the pre-set inclusion criteria. The pooled analysis included 5372 postmenopausal women. Overall, Risk Ratios and 95% Confident Intervals were 1.11 and 0.74–1.68. We found no evidence of heterogeneity. Neither vitamin D dosage nor mode of administration significantly affected breast cancer risk. However, treatment efficacy was somewhat greater when vitamin D was administered at the highest dosage and in combination with calcium (Risk Ratio 0.58, 95% Confident Interval 0.23–1.47 and Risk Ratio 0.93, 95% Confident Interval 0.54–1.60, respectively). In conclusions, vitamin D use seems not to be associated with a reduced risk of breast cancer development in postmenopausal women. However, the available evidence is still limited and inadequate to draw firm conclusions. Study protocol code: FARM8L2B5L

    Plasma membrane receptor mediated MAPK signaling pathways are activated in human uterine cervix at parturition

    Get PDF
    BACKGROUND: Cervical ripening resembles an inflammatory reaction. Estrogens induce leukocyte migration into tissue and factors promoting cervical remodeling and labor, although the mechanisms are only partially known. The aim of this study was to investigate whether plasma membrane receptor mediated pathways, known to be activated by estrogens and proinflammatory compounds, are involved in cervical ripening before labor. METHODS: The expression and distribution of mitogen activated protein kinases (MAPK), which transduce extracellular signals into intracellular responses through phosphorylation, and their intracellular targets transcription factors c-Jun and c-Fos proteins (AP-1) were analysed in cervical biopsies from term pregnant women (TP), immediately after parturition (PP), and from non-pregnant women (NP). Immunohistochemistry and RT-PCR techniques were used. RESULTS: Cell-specific alterations in the immunostaining pattern for MAPK were observed. The expressions of activated, phosphorylated MAPK forms pERK1/2, pJNK and p38MAPK were significantly increased in cervical stroma until TP and pERK1/2 expression was significantly enhanced in PP group. c-Jun was significantly increased in cervical stroma and smooth muscle in TP as compared to NP group. c-Fos was significantly increased in stroma, squamous epithelium and glandular epithelium in PP as compared to TP group. CONCLUSION: We report, for the first time, cell-specific activation of pMAPKs and their targets transcription factors c-Fos and c-Jun (AP-1) proteins in human uterine cervix until term pregnancy, and immediately after parturition. These results suggest a role for MAPK activation in cervical ripening before labor

    Evaluation of non-inferiority of intradermal versus adjuvanted seasonal influenza vaccine using two serological techniques: a randomised comparative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although seasonal influenza vaccine is effective in the elderly, immune responses to vaccination are lower in the elderly than in younger adults. Strategies to optimise responses to vaccination in the elderly include using an adjuvanted vaccine or using an intradermal vaccination route. The immunogenicity of an intradermal seasonal influenza vaccine was compared with that of an adjuvanted vaccine in the elderly.</p> <p>Methods</p> <p>Elderly volunteers (age ≥ 65 years) were randomised to receive a single dose of trivalent seasonal influenza vaccine: either a split-virion vaccine containing 15 μg haemagglutinin [HA]/strain/0.1-ml dose administered intradermally, or a subunit vaccine (15 μg HA/strain/0.5-ml dose) adjuvanted with MF59C.1 and administered intramuscularly. Blood samples were taken before and 21 ± 3 days post-vaccination. Anti-HA antibody titres were assessed using haemagglutination inhibition (HI) and single radial haemolysis (SRH) methods. We aimed to show that the intradermal vaccine was non-inferior to the adjuvanted vaccine.</p> <p>Results</p> <p>A total of 795 participants were enrolled (intradermal vaccine n = 398; adjuvanted vaccine n = 397). Non-inferiority of the intradermal vaccine was demonstrated for the A/H1N1 and B strains, but not for the A/H3N2 strain (upper bound of the 95% CI = 1.53) using the HI method, and for all three strains by the SRH method. A <it>post-hoc </it>analysis of covariance to adjust for baseline antibody titres demonstrated the non-inferiority of the intradermal vaccine by HI and SRH methods for all three strains. Both vaccines were, in general, well tolerated; the incidence of injection-site reactions was higher for the intradermal (70.1%) than the adjuvanted vaccine (33.8%) but these reactions were mild and of short duration.</p> <p>Conclusions</p> <p>The immunogenicity and safety of the intradermal seasonal influenza vaccine in the elderly was comparable with that of the adjuvanted vaccine. Intradermal vaccination to target the immune properties of the skin appears to be an appropriate strategy to address the challenge of declining immune responses in the elderly.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: NCT00554333.</p

    Metabolic engineering of astaxanthin biosynthesis in maize endosperm and characterization of a prototype high oil hybrid

    Get PDF
    Maize was genetically engineered for the biosynthesis of the high value carotenoid astaxanthin in the kernel endosperm. Introduction of a β-carotene hydroxylase and a β-carotene ketolase into a white maize genetic background extended the carotenoid pathway to astaxanthin. Simultaneously, phytoene synthase, the controlling enzyme of carotenogenesis, was over-expressed for enhanced carotenoid production and lycopene ε-cyclase was knocked-down to direct more precursors into the β-branch of the extended ketocarotenoid pathway which ends with astaxanthin. This astaxanthin-accumulating transgenic line was crossed into a high oil- maize genotype in order to increase the storage capacity for lipophilic astaxanthin. The high oil astaxanthin hybrid was compared to its astaxanthin producing parent. We report an in depth metabolomic and proteomic analysis which revealed major up- or down- regulation of genes involved in primary metabolism. Specifically, amino acid biosynthesis and the citric acid cycle which compete with the synthesis or utilization of pyruvate and glyceraldehyde 3-phosphate, the precursors for carotenogenesis, were down-regulated. Nevertheless, principal component analysis demonstrated that this compositional change is within the range of the two wild type parents used to generate the high oil producing astaxanthin hybrid
    corecore