20 research outputs found

    Apolipoprotein A-I Attenuates Palmitate-Mediated NF-κB Activation by Reducing Toll-Like Receptor-4 Recruitment into Lipid Rafts

    Get PDF
    While high-density lipoprotein (HDL) is known to protect against a wide range of inflammatory stimuli, its anti-inflammatory mechanisms are not well understood. Furthermore, HDL's protective effects against saturated dietary fats have not been previously described. In this study, we used endothelial cells to demonstrate that while palmitic acid activates NF-κB signaling, apolipoprotein A–I, (apoA-I), the major protein component of HDL, attenuates palmitate-induced NF-κB activation. Further, vascular NF-κB signaling (IL-6, MCP-1, TNF-α) and macrophage markers (CD68, CD11c) induced by 24 weeks of a diabetogenic diet containing cholesterol (DDC) is reduced in human apoA-I overexpressing transgenic C57BL/6 mice compared to age-matched WT controls. Moreover, WT mice on DDC compared to a chow diet display increased gene expression of lipid raft markers such as Caveolin-1 and Flotillin-1, and inflammatory Toll-like receptors (TLRs) (TLR2, TLR4) in the vasculature. However apoA-I transgenic mice on DDC show markedly reduced expression of these genes. Finally, we show that in endothelial cells TLR4 is recruited into lipid rafts in response to palmitate, and that apoA-I prevents palmitate-induced TLR4 trafficking into lipid rafts, thereby blocking NF-κB activation. Thus, apoA-I overexpression might be a useful therapeutic tool against vascular inflammation

    Simultaneous spectrophotometric estimation of paracetamol and metoclopramide hydrochloride in solid dosage form

    No full text
    Two simple, accurate, rapid and economical spectrophotometric methods have been developed for the simultaneous determination of paracetamol and metoclopramide hydrochloride from tablet dosage form. The first method developed employs formation and solving simultaneous equations using 248.6 nm and 275.6 nm as two wavelengths for formation of equations. Second method is absorbance ratio in which wavelengths selected were 265.6 nm as isoabsorptive point and 275.6 nm as λmax of paracetamol. Both the drugs and their mixtures obey Beer-Lamberts law at selected wavelengths at given concentration range. The methods have been validated statistically and by recovery studies. The results of analysis have been validated statistically and by recovery studies

    Simultaneous Determination of Ofloxacin and Ornidazole in Solid Dosage Form by RP-HPLC and HPTLC Techniques

    No full text
    The objective of this work was to develop and validate simple, rapid and accurate chromatographic methods for simultaneous determination of ofloxacin and ornidazole in solid dosage form. The first method was based on reversed phase high performance liquid chromatography, on Intersil C18 column (250 mm, 4.6 i.d.), using acetonitrile:methanol: 0.025M phosphate buffer, pH 3.0 (30:10:60 % v/v/v) as the mobile phase, at a flow rate of 1 ml/min at ambient temperature. Quantification was achieved with UV detection at 318 nm over a concentration range of 2-40 µg/ml for ofloxacin and 5-100 µg/ml for ornidazole. The mean retention time of ofloxacin and ornidazole was found to be 4.04 min and 5.83 min, 6.77 min (isomers), respectively. The amount of ofloxacin and ornidazole estimated as percentage of label claimed was found to be 100.23 and 99.61%, with mean percent recoveries 100.20 and 100.93%, respectively. The second method was based on TLC separation of these drugs using silica gel 60F254 aluminium sheets and dichloromethane:methanol:25% ammonia solution (9.5:1:3 drops v/v) as mobile phase. Detection was carried out at 318 nm over the concentration range of 20-100 ng/spot for ofloxacin and 50-250 ng/spot for ornidazole. The mean Rf value of ofloxacin and ornidazole was found to be 0.16 and 0.56, 0.78 (isomers), respectively. The amount of ofloxacin and ornidazole estimated as percentage of label claimed was found to be 100.23 and 99.61% with mean percent recoveries 100.47 and 99.32%, respectively. Both these methods were found to be simple, precise, accurate, selective and rapid and could be successfully applied for the determination of pure laboratory prepared mixtures and tablets
    corecore