90 research outputs found

    Measurement of D-s(+) and D-s(*+) production in B meson decays and from continuum e(+)e(-) annihilation at √s=10.6 GeV

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APSNew measurements of Ds+ and Ds*+ meson production rates from B decays and from qq̅ continuum events near the Υ(4S) resonance are presented. Using 20.8 fb-1 of data on the Υ(4S) resonance and 2.6 fb-1 off-resonance, we find the inclusive branching fractions B(B⃗Ds+X)=(10.93±0.19±0.58±2.73)% and B(B⃗Ds*+X)=(7.9±0.8±0.7±2.0)%, where the first error is statistical, the second is systematic, and the third is due to the Ds+→φπ+ branching fraction uncertainty. The production cross sections σ(e+e-→Ds+X)×B(Ds+→φπ+)=7.55±0.20±0.34pb and σ(e+e-→Ds*±X)×B(Ds+→φπ+)=5.8±0.7±0.5pb are measured at center-of-mass energies about 40 MeV below the Υ(4S) mass. The branching fractions ΣB(B⃗Ds(*)+D(*))=(5.07±0.14±0.30±1.27)% and ΣB(B⃗Ds*+D(*))=(4.1±0.2±0.4±1.0)% are determined from the Ds(*)+ momentum spectra. The mass difference m(Ds+)-m(D+)=98.4±0.1±0.3MeV/c2 is also measured.This work was supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation

    Immunity to Aspergillus fumigatus: the basis for immunotherapy and vaccination

    No full text
    Efficient responses to fungi require different mechanisms of immunity. Dendritic cells (DCs) are uniquely able to decode the fungus-associated information and translate it into qualitatively different T helper (Th) immune responses. Murine and human DCs phagocytose conidia and hyphae of Aspergillus fumigatus through distinct recognition receptors. The engagement of distinct receptors translates into disparate downstream signaling events, ultimately affecting cytokine production and co-stimulation. Adoptive transfer of different types of DCs activates protective and non-protective Th cells as well as regulatory T cells, ultimately affecting the outcome of the infection in mice with invasive aspergillosis. The infusion of fungus-pulsed or RNA-transfected DCs also accelerates recovery of functional antifungal Th 1 responses in mice with allogeneic hematopoietic stem cell transplantation. Patients receiving T cell-depleted allogeneic hematopoietic stem cell transplantation are unable to develop antigen-specific T cell responses soon after transplant due to defective DC functions. Our results suggest that the adoptive transfer of DCs may restore immunocompetence in hematopoietic stem cell transplantation by contributing to the educational program of T cells. Thus, the remarkable furictional plasticity of DCs can be exploited for the deliberate targeting of cells and pathways of cell-mediated immunity in response to the fungus

    Irreversible Electroporation (IRE) in Renal Tumors

    No full text
    Small renal masses (SRMs) have been traditionally managed with surgical resection. Minimally invasive nephron-sparing treatment methods are preferred to avoid harmful consequences of renal insufficiency, with partial nephrectomy (PN) considered the gold standard. With increase in the incidence of the SRMs and evolution of ablative technologies, percutaneous ablation is now considered a viable treatment alternative to surgical resection with comparable oncologic outcomes and better nephron-sparing property. Traditional thermal ablative techniques suffer from unique set of challenges in treating tumors near vessels or critical structures. Irreversible electroporation (IRE), with its non-thermal nature and connective tissue-sparing properties, has shown utility where traditional ablative techniques face challenges. This review presents the role of IRE in renal tumors based on the most relevant published literature on the IRE technology, animal studies, and human experience
    • …
    corecore