5 research outputs found

    Outdoor particulate matter and childhood asthma admissions in Athens, Greece: a time-series study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Particulate matter with diameter less than 10 micrometers (PM<sub>10</sub>) that originates from anthropogenic activities and natural sources may settle in the bronchi and cause adverse effects possibly via oxidative stress in susceptible individuals, such as asthmatic children. This study aimed to investigate the effect of outdoor PM<sub>10 </sub>concentrations on childhood asthma admissions (CAA) in Athens, Greece.</p> <p>Methods</p> <p>Daily counts of CAA from the three Children's Hospitals within the greater Athens' area were obtained from the hospital records during a four-year period (2001-2004, n = 3602 children). Mean daily PM<sub>10 </sub>concentrations recorded by the air pollution-monitoring network of the greater Athens area were also collected. The relationship between CAA and PM<sub>10 </sub>concentrations was investigated using the Generalized Linear Models with Poisson distribution and logistic analysis.</p> <p>Results</p> <p>There was a statistically significant (95% CL) relationship between CAA and mean daily PM<sub>10 </sub>concentrations on the day of exposure (+3.8% for 10 μg/m<sup>3 </sup>increase in PM<sub>10 </sub>concentrations), while a 1-day lag (+3.4% for 10 μg/m<sup>3 </sup>increase in PM<sub>10 </sub>concentrations) and a 4-day lag (+4.3% for 10 μg/m<sup>3 </sup>increase in PM<sub>10 </sub>concentrations) were observed for older asthmatic children (5-14 year-old). High mean daily PM<sub>10 </sub>concentration (the highest 10%; >65.69 μg/m<sup>3</sup>) doubled the risk of asthma exacerbations even in younger asthmatic children (0-4 year-old).</p> <p>Conclusions</p> <p>Our results provide evidence of the adverse effect of PM<sub>10 </sub>on the rates of paediatric asthma exacerbations and hospital admissions. A four-day lag effect between PM<sub>10 </sub>peak exposure and asthma admissions was also observed in the older age group.</p

    Identification of aerosol type over the Arabian Sea in the premonsoon season during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB)

    No full text
    A discrimination of the different aerosol types over the Arabian Sea (AS) during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB-06) is made using values of aerosol optical depth (AOD) at 500 nm (AOD500) and à ngström exponent (α) in the spectral band 340-1020 nm (α340-1020). For this purpose, appropriate thresholds for AOD500 and α340-1020 are applied. It is shown that a single aerosol type in a given location over the AS can exist only under specific conditions while the presence of mixed aerosols is the usual situation. Analysis indicates that the dominant aerosol types change significantly in the different regions (coastal, middle, and far) of AS. Thus the urban/industrial aerosols are mainly observed in coastal AS, the desert dust particles occur in the middle and northern AS, while clear maritime conditions mainly occur in far AS. Spectral AOD and à ngström exponent data were analyzed to obtain information about the adequacy of the simple use of the à ngström exponent and spectral variation of a for characterizing the aerosols. Using the least squares method, α is calculated in the spectral interval 340-1020 nm along with the coefficients a1 and a2 of the second-order polynomial fit to the plotted logarithm of AOD versus the logarithm of wavelength. The results show that the spectral curvature can effectively be used as a tool for their discrimination, since the fine mode aerosols exhibit negative curvature, while the coarse mode particles exhibit positive curvature. The correlation between the coefficients a1 and a2 with the à ngström exponent, and the atmospheric turbidity, is further investigated
    corecore