34 research outputs found

    Determinants of Functional Coupling between Astrocytes and Respiratory Neurons in the Pre-Bötzinger Complex

    Get PDF
    Respiratory neuronal network activity is thought to require efficient functioning of astrocytes. Here, we analyzed neuron-astrocyte communication in the pre-Bötzinger Complex (preBötC) of rhythmic slice preparations from neonatal mice. In astrocytes that exhibited rhythmic potassium fluxes and glutamate transporter currents, we did not find a translation of respiratory neuronal activity into phase-locked astroglial calcium signals. In up to 20% of astrocytes, 2-photon calcium imaging revealed spontaneous calcium fluctuations, although with no correlation to neuronal activity. Calcium signals could be elicited in preBötC astrocytes by metabotropic glutamate receptor activation or after inhibition of glial glutamate uptake. In the latter case, astrocyte calcium elevation preceded a surge of respiratory neuron discharge activity followed by network failure. We conclude that astrocytes do not exhibit respiratory-rhythmic calcium fluctuations when they are able to prevent synaptic glutamate accumulation. Calcium signaling is, however, observed when glutamate transport processes in astrocytes are suppressed or neuronal discharge activity is excessive

    Flip-Flop of Phospholipids in Proteoliposomes Reconstituted from Detergent Extract of Chloroplast Membranes: Kinetics and Phospholipid Specificity

    Get PDF
    Eukaryotic cells are compartmentalized into distinct sub-cellular organelles by lipid bilayers, which are known to be involved in numerous cellular processes. The wide repertoire of lipids, synthesized in the biogenic membranes like the endoplasmic reticulum and bacterial cytoplasmic membranes are initially localized in the cytosolic leaflet and some of these lipids have to be translocated to the exoplasmic leaflet for membrane biogenesis and uniform growth. It is known that phospholipid (PL) translocation in biogenic membranes is mediated by specific membrane proteins which occur in a rapid, bi-directional fashion without metabolic energy requirement and with no specificity to PL head group. A recent study reported the existence of biogenic membrane flippases in plants and that the mechanism of plant membrane biogenesis was similar to that found in animals. In this study, we demonstrate for the first time ATP independent and ATP dependent flippase activity in chloroplast membranes of plants. For this, we generated proteoliposomes from Triton X-100 extract of intact chloroplast, envelope membrane and thylakoid isolated from spinach leaves and assayed for flippase activity using fluorescent labeled phospholipids. Half-life time of flipping was found to be 6±1 min. We also show that: (a) intact chloroplast and envelope membrane reconstituted proteoliposomes can flip fluorescent labeled analogs of phosphatidylcholine in ATP independent manner, (b) envelope membrane and thylakoid reconstituted proteoliposomes can flip phosphatidylglycerol in ATP dependent manner, (c) Biogenic membrane ATP independent PC flipping activity is protein mediated and (d) the kinetics of PC translocation gets affected differently upon treatment with protease and protein modifying reagents

    Plant growth promoting rhizobia: challenges and opportunities

    Get PDF
    corecore