1,256 research outputs found

    Investigation of glutathione S-transferase zeta and the development of sporadic breast cancer

    Get PDF
    BACKGROUND: Certain genes from the glutathione S-transferase superfamily have been associated with several cancer types. It was the objective of this study to determine whether alleles of the glutathione S-transferase zeta 1 (GSTZ1) gene are associated with the development of sporadic breast cancer. METHODS: DNA samples obtained from a Caucasian population affected by breast cancer and a control population, matched for age and ethnicity, were genotyped for a polymorphism of the GSTZ1 gene. After PCR, alleles were identified by restriction enzyme digestion and results analysed by chi-square and CLUMP analysis. RESULTS: Chi-squared analysis gave a χ(2) value of 4.77 (three degrees of freedom) with P = 0.19, and CLUMP analysis gave a T1 value of 9.02 with P = 0.45 for genotype frequencies and a T1 value of 4.77 with P = 0.19 for allele frequencies. CONCLUSION: Statistical analysis indicates that there is no association of the GSTZ1 variant and hence the gene does not appear to play a significant role in the development of sporadic breast cancer

    Experimental realisation of Shor's quantum factoring algorithm using qubit recycling

    Full text link
    Quantum computational algorithms exploit quantum mechanics to solve problems exponentially faster than the best classical algorithms. Shor's quantum algorithm for fast number factoring is a key example and the prime motivator in the international effort to realise a quantum computer. However, due to the substantial resource requirement, to date, there have been only four small-scale demonstrations. Here we address this resource demand and demonstrate a scalable version of Shor's algorithm in which the n qubit control register is replaced by a single qubit that is recycled n times: the total number of qubits is one third of that required in the standard protocol. Encoding the work register in higher-dimensional states, we implement a two-photon compiled algorithm to factor N=21. The algorithmic output is distinguishable from noise, in contrast to previous demonstrations. These results point to larger-scale implementations of Shor's algorithm by harnessing scalable resource reductions applicable to all physical architectures.Comment: 7 pages, 3 figure

    Grassmannian flows and applications to nonlinear partial differential equations

    Full text link
    We show how solutions to a large class of partial differential equations with nonlocal Riccati-type nonlinearities can be generated from the corresponding linearized equations, from arbitrary initial data. It is well known that evolutionary matrix Riccati equations can be generated by projecting linear evolutionary flows on a Stiefel manifold onto a coordinate chart of the underlying Grassmann manifold. Our method relies on extending this idea to the infinite dimensional case. The key is an integral equation analogous to the Marchenko equation in integrable systems, that represents the coodinate chart map. We show explicitly how to generate such solutions to scalar partial differential equations of arbitrary order with nonlocal quadratic nonlinearities using our approach. We provide numerical simulations that demonstrate the generation of solutions to Fisher--Kolmogorov--Petrovskii--Piskunov equations with nonlocal nonlinearities. We also indicate how the method might extend to more general classes of nonlinear partial differential systems.Comment: 26 pages, 2 figure

    Gamma interferon induces different keratinocyte cellular patterns of expression of HLA-DR and DQ and intercellular adhesion molecule-I (ICAM-I) antigens

    Full text link
    With indirect immunofluorescence techniques we demonstrated that recombinant gamma-interferon induced the expression of the class II antigens HLA-DR and HLA-DQ as well as intercellular adhesion molecule-1 (ICAM-1) on normal, cultured human keratinocytes grown in low-calcium, serum-free medium. Each antigen displayed a distinctive cellular staining pattern. HLA-DR was strongly localized to perinuclear zones with intense cell surface expression; HLA-DQ displayed a perinuclear accentuation, but with minimal cell surface staining, and ICAM-1 was strongly expressed in a diffuse cytoplasmic pattern with intense cell surface expression. Keratinocytes grown in medium supplemented with 10% fetal calf serum underwent differentiation, with a diminished expression of all three antigens as compared to those grown in low-calcium, serum-free medium. These results confirm that gamma interferon can differentially regulate HLA-DR nd HLA-DQ expression; that there are probably different biochemical metabolic pathways by which these three molecules are expressed on keratinocytes, and that the expression is also a function of the degree of keratinocyte differentiation. The strong cell surface expression of ICAM-1 is suggested to be of major importance as the recognition molecule, by which T cells bind to gamma interferon exposed keratinocytes, and suggests and integral role for this molecule in epidermal lymphocyte trafficking.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74686/1/j.1365-2133.1989.tb07759.x.pd

    Interfacing low-energy SAW nebulization with liquid chromatography-mass spectrometry for the analysis of biological samples

    Get PDF
    Soft ionization methods for the introduction of labile biomolecules into a mass spectrometer are of fundamental importance to biomolecular analysis. Previously, electrospray ionization (ESI) and matrix assisted laser desorption-ionization (MALDI) have been the main ionization methods used. Surface acoustic wave nebulization (SAWN) is a new technique that has been demonstrated to deposit less energy into ions upon ion formation and transfer for detection than other methods for sample introduction into a mass spectrometer (MS). Here we report the optimization and use of SAWN as a nebulization technique for the introduction of samples from a low flow of liquid, and the interfacing of SAWN with liquid chromatographic separation (LC) for the analysis of a protein digest. This demonstrates that SAWN can be a viable, low-energy alternative to ESI for the LC-MS analysis of proteomic samples

    D3-brane Potentials from Fluxes in AdS/CFT

    Get PDF
    We give a comprehensive treatment of the scalar potential for a D3-brane in a warped conifold region of a compactification with stabilized moduli. By studying general ultraviolet perturbations in supergravity, we systematically incorporate `compactification effects' sourced by supersymmetry breaking in the compact space. Significant contributions to the D3-brane potential, including the leading term in the infrared, arise from imaginary anti-self-dual (IASD) fluxes. For an arbitrary Calabi-Yau cone, we determine the most general IASD fluxes in terms of scalar harmonics, then compute the resulting D3-brane potential. Specializing to the conifold, we identify the operator dual to each mode of flux, and for chiral operators we confirm that the potential computed in the gauge theory matches the gravity result. The effects of four-dimensional curvature, including the leading D3-brane mass term, arise directly from the ten-dimensional equations of motion. Furthermore, we show that gaugino condensation on D7-branes provides a local source for IASD flux. This flux precisely encodes the nonperturbative contributions to the D3-brane potential, yielding a promising ten-dimensional representation of four-dimensional nonperturbative effects. Our result encompasses all significant contributions to the D3-brane potential discussed in the literature, and does so in the single coherent framework of ten-dimensional supergravity. Moreover, we identify new terms with irrational scaling dimensions that were inaccessible in prior works. By decoupling gravity in a noncompact configuration, then systematically reincorporating compactification effects as ultraviolet perturbations, we have provided an approach in which Planck-suppressed contributions to the D3-brane effective action can be computed.Comment: 70 page

    Prioritising surveillance for alien organisms transported as stowaways on ships travelling to South Africa

    Get PDF
    The global shipping network facilitates the transportation and introduction of marine and terrestrial organisms to regions where they are not native, and some of these organisms become invasive. South Africa was used as a case study to evaluate the potential for shipping to contribute to the introduction and establishment of marine and terrestrial alien species (i.e. establishment debt) and to assess how this varies across shipping routes and seasons. As a proxy for the number of species introduced (i.e. 'colonisation pressure') shipping movement data were used to determine, for each season, the number of ships that visited South African ports from foreign ports and the number of days travelled between ports. Seasonal marine and terrestrial environmental similarity between South African and foreign ports was then used to estimate the likelihood that introduced species would establish. These data were used to determine the seasonal relative contribution of shipping routes to South Africa's marine and terrestrial establishment debt. Additionally, distribution data were used to identify marine and terrestrial species that are known to be invasive elsewhere and which might be introduced to each South African port through shipping routes that have a high relative contribution to establishment debt. Shipping routes from Asian ports, especially Singapore, have a particularly high relative contribution to South Africa's establishment debt, while among South African ports, Durban has the highest risk of being invaded. There was seasonal variation in the shipping routes that have a high relative contribution to the establishment debt of the South African ports. The presented method provides a simple way to prioritise surveillance effort and our results indicate that, for South Africa, port-specific prevention strategies should be developed, a large portion of the available resources should be allocated to Durban, and seasonal variations and their consequences for prevention strategies should be explored further. (Résumé d'auteur

    Hemolysis Is Associated with Low Reticulocyte Production Index and Predicts Blood Transfusion in Severe Malarial Anemia

    Get PDF
    Background: Falciparum Malaria, an infectious disease caused by the apicomplexan parasite Plasmodium falciparum, is among the leading causes of death and morbidity attributable to infectious diseases worldwide. In Gabon, Central Africa, one out of four inpatients have severe malarial anemia (SMA), a life-threatening complication if left untreated. Emerging drug resistant parasites might aggravate the situation. This case control study investigates biomarkers of enhanced hemolysis in hospitalized children with either SMA or mild malaria (MM). Methods and Findings: Ninety-one children were included, thereof 39 SMA patients. Strict inclusion criteria were chosen to exclude other causes of anemia. At diagnosis, erythrophagocytosis (a direct marker for extravascular hemolysis, EVH) was enhanced in SMA compared to MM patients (5.0 arbitrary units (AU) (interquartile range (IR): 2.2–9.6) vs. 2.1 AU (IR: 1.3–3.9), p<0.01). Furthermore, indirect markers for EVH, (i.e. serum neopterin levels, spleen size enlargement and monocyte pigment) were significantly increased in SMA patients. Markers for erythrocyte ageing, such as CD35 (complement receptor 1), CD55 (decay acceleration factor) and phosphatidylserine exposure (annexin-V-binding) were investigated by flow cytometry. In SMA patients, levels of CD35 and CD55 on the red blood cell surface were decreased and erythrocyte removal markers were increased when compared to MM or reconvalescent patients. Additionally, intravascular hemolysis (IVH) was quantified using several indirect markers (LDH, alpha-HBDH, haptoglobin and hemopexin), which all showed elevated IVH in SMA. The presence of both IVH and EVH predicted the need for blood transfusion during antimalarial treatment (odds ratio 61.5, 95% confidence interval (CI): 8.9–427). Interestingly, this subpopulation is characterized by a significantly lowered reticulocyte production index (RPI, p<0.05). Conclusions: Our results show the multifactorial pathophysiology of SMA, whereby EVH and IVH play a particularly important role. We propose a model where removal of infected and non-infected erythrocytes of all ages (including reticulocytes) by EVH and IVH is a main mechanism of SMA. Further studies are underway to investigate the mechanism and extent of reticulocyte removal to identify possible interventions to reduce the risk of SMA development

    A systematic analysis of host factors reveals a Med23-interferon-λ regulatory axis against herpes simplex virus type 1 replication

    Get PDF
    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus causing vesicular oral or genital skin lesions, meningitis and other diseases particularly harmful in immunocompromised individuals. To comprehensively investigate the complex interaction between HSV-1 and its host we combined two genome-scale screens for host factors (HFs) involved in virus replication. A yeast two-hybrid screen for protein interactions and a RNA interference (RNAi) screen with a druggable genome small interfering RNA (siRNA) library confirmed existing and identified novel HFs which functionally influence HSV-1 infection. Bioinformatic analyses found the 358 HFs were enriched for several pathways and multi-protein complexes. Of particular interest was the identification of Med23 as a strongly anti-viral component of the largely pro-viral Mediator complex, which links specific transcription factors to RNA polymerase II. The anti-viral effect of Med23 on HSV-1 replication was confirmed in gain-of-function gene overexpression experiments, and this inhibitory effect was specific to HSV-1, as a range of other viruses including Vaccinia virus and Semliki Forest virus were unaffected by Med23 depletion. We found Med23 significantly upregulated expression of the type III interferon family (IFN-λ) at the mRNA and protein level by directly interacting with the transcription factor IRF7. The synergistic effect of Med23 and IRF7 on IFN-λ induction suggests this is the major transcription factor for IFN-λ expression. Genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, previously shown to be deficient in IFN-λ secretion, found a significant correlation with a single nucleotide polymorphism in the IFN-λ3 (IL28b) promoter strongly linked to Hepatitis C disease and treatment outcome. This paper describes a link between Med23 and IFN-λ, provides evidence for the crucial role of IFN-λ in HSV-1 immune control, and highlights the power of integrative genome-scale approaches to identify HFs critical for disease progression and outcome
    corecore