23 research outputs found

    Norovirus infections in children under 5 years of age hospitalized due to the acute viral gastroenteritis in northeastern Poland

    Get PDF
    The primary aim of this study was to evaluate the frequency and seasonality of norovirus infection in hospitalized Polish children under 5 years of age, and a secondary aim was to compare the clinical severity of norovirus and rotavirus disease. The prospective surveillance study was carried out from July 2009 through June 2010. Stool samples from 242 children hospitalized due to acute viral gastroenteritis were tested for rotavirus group A and adenovirus with commercial immunochromatographic test and for norovirus with EIA assay. Single norovirus infection was found in 35/242 (14.5%) patients and in a further 5 (2.1%) children as co-infection with rotavirus. Overall, norovirus was detected in 16.5% of stool specimens. Norovirus infections tended to peak from October to November and again from February to March. In autumn months and in February, the proportion of norovirus gastroenteritis cases was equal or even surpassed those of rotavirus origin. Both norovirus and rotavirus infections most commonly affected children between 12 and 23 months of age. The low-grade or no fever was significantly more common in children infected with norovirus (94.3%) compared to rotavirus cases (52.9%). Overall, norovirus gastroenteritis was less severe than rotavirus disease with regard to 20-point severity scale (p < 0.05). Noroviruses have emerged as a relevant cause of acute gastroenteritis in Polish children. There is a great need for introducing routine norovirus testing of hospitalized children with gastroenteritis

    Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives

    Get PDF
    Deoxynivalenol (DON) is the major mycotoxin produced by Fusarium fungi in grains. Food and feed contaminated with DON pose a health risk to humans and livestock. The risk can be reduced by enzymatic detoxification. Complete mineralization of DON by microbial cultures has rarely been observed and the activities turned out to be unstable. The detoxification of DON by reactions targeting its epoxide group or hydroxyl on carbon 3 is more feasible. Microbial strains that de-epoxidize DON under anaerobic conditions have been isolated from animal digestive system. Feed additives claimed to de-epoxidize trichothecenes enzymatically are on the market but their efficacy has been disputed. A new detoxification pathway leading to 3-oxo-DON and 3-epi-DON was discovered in taxonomically unrelated soil bacteria from three continents; the enzymes involved remain to be identified. Arabidopsis, tobacco, wheat, barley, and rice were engineered to acetylate DON on carbon 3. In wheat expressing DON acetylation activity, the increase in resistance against Fusarium head blight was only moderate. The Tri101 gene from Fusarium sporotrichioides was used; Fusarium graminearum enzyme which possesses higher activity towards DON would presumably be a better choice. Glycosylation of trichothecenes occurs in plants, contributing to the resistance of wheat to F. graminearum infection. Marker-assisted selection based on the trichothecene-3-O-glucosyltransferase gene can be used in breeding for resistance. Fungal acetyltransferases and plant glucosyltransferases targeting carbon 3 of trichothecenes remain promising candidates for engineering resistance against Fusarium head blight. Bacterial enzymes catalyzing oxidation, epimerization, and less likely de-epoxidation of DON may extend this list in future

    Medicinal plants – prophylactic and therapeutic options for gastrointestinal and respiratory diseases in calves and piglets? A systematic review

    Full text link

    DEGRADATION AND DEBITTERING OF A TRYPTIC DIGEST FROM BETA-CASEIN BY AMINOPEPTIDASE-N FROM LACTOCOCCUS-LACTIS SUBSP CREMORIS WG2

    No full text
    The mode of action of purified aminopeptidase N from Lactococcus lactis subsp. cremoris Wg2 on a complex peptide mixture of a tryptic digest from bovine beta-casein was analyzed. The oligopeptides produced in the tryptic digest before and after aminopeptidase N treatment were identified by analysis of the N- and C-terminal amino acid sequences and amino acid compositions of the isolated peptides and by on-line liquid chromatography-mass spectrometry. Incubation of purified peptides with aminopeptidase N resulted in complete hydrolysis of many peptides, while others were only partially hydrolyzed or not hydrolyzed. The tryptic digest of beta-casein exhibits a strong bitter taste, which corresponds to the strong hydrophobicity of several peptides in the tryptic digest of beta-casein. The degradation of the ''bitter'' tryptic digest by aminopeptidase N resulted in a decrease of hydrophobic peptides and a drastic decrease of bitterness of the reaction mixture

    Matched Metal Compression Molding of Polymer Composites

    No full text
    corecore