37 research outputs found
Interdisciplinary paleovegetation study in the Fernando de Noronha Island (Pernambuco State), northeastern Brazil
The aim of this research was to reconstruct vegetation changes (with climate inferences) that occurred during the Holocene in the Fernando de Noronha Island, Pernambuco State, northeastern Brazil. The research approach included the use of geochemical (mineralogy, elemental), carbon isotopes (δ13C, 14C) and pollen analyses in soil organic matter (SOM) and sediments collected in Lagoa da Viração and Manguezal do Sueste. The carbon isotopes data of SOM indicated that there was no significant vegetation changes during the last 7400 BP, suggesting that the climate was not the determinant factor for the vegetation dynamics. The pollen analysis of the sediment of a core collected in the Lagoa da Viração showed the absence of Quaternary material in the period between 720 BP and 90 BP. The mineralogical analysis of deeper layer showed the presence of diopside indicating this material was developed "in situ". Only in the shallow part of the core were found pollen of similar plant species of the modern vegetation. The geochemistry and isotope results, in association with the sediment type and pollen analyses of sediment samples of Manguezal do Sueste, indicated variations in the vegetation and in its location since the middle Holocene. Such variations can be associated with climatic events and sea level oscillations and also with anthropogenic events considering the last five hundred years._________________________________________________________________________________________ RESUMO: Esta pesquisa teve o objetivo de reconstruir trocas de vegetação (com referências climáticas) que ocorreram durante o Holoceno na ilha de Fernando de Noronha, Estado de Pernambuco, nordeste do Brasil. Para o desenvolvimento da pesquisa utilizou-se de análises geoquímicas (minerais, elementar), isótopos do carbono (δ13C, 14C) e análises polínicas em solos e sedimentos coletados na Lagoa da Viração e no manguezal do Sueste. Os isótopos do carbono dos solos indicaram que não houve trocas significativas de vegetação durante os últimos 7400 anos AP, sugerindo que o clima não foi um fator determinante para a dinâmica da vegetação. A análise polínica dos sedimentos da Lagoa da Viração mostrou ausência de elementos quaternários no período entre 720 AP e 90 AP. A análise mineralógica das camadas mais profundas mostrou a presença de diopsídeo, indicando que este material foi desenvolvido"in situ". Somente na parte superficial do testemunho foram encontrados palinomorfos de plantas similares à vegetação moderna. Os resultados geoquímicos e isotópicos, em associação com o tipo de sedimento e as análises polínicas das amostras de sedimento do Manguezal do Sueste, indicaram variações na vegetação e na sua localização desde o Holoceno médio. Tais variações podem estar associadas a eventos climáticos e oscilações do nível do mar e também a eventos antrópicos considerando os últimos quinhentos anos
Recommended from our members
Uncoupling human and climate drivers of late Holocene vegetation change in southern Brazil
In the highlands of southern Brazil an anthropogenitcally driven expansion of forest occurred at the
expense of grasslands between 1410 and 900cal BP, coincident with a period of demographic and
cultural change in the region. Previous studies have debated the relative contributions of increasing
wetter and warmer climate conditions and human landscape modifcations to forest expansion, but
generally lacked high resoltiuon proxies to measure these efects, or have relied on single proxies to
reconstruct both climate and vegetation. Here, we develop and test a model of natural ecosystem
distribution against vegetation histories, paleoclimate proxies, and the archaeological record to
distinguish human from temperature and precipitation impacts on the distribution and expansion of
Araucaria forests during the late Holocene. Carbon isotopes from soil profles confrm that in spite of
climatic fuctuations, vegetation was stable and forests were spatially limited to south-facing slopes
in the absence of human inputs. In contrast, forest management strategies for the past 1400 years
expanded this economically important forest beyond its natural geographic boundaries in areas of
dense pre-Columbian occupation, suggesting that landscape modifcations were linked to demographic
changes, the efects of which are still visible today
Brazilian montane rainforest expansion induced by Heinrich Stadial 1 event
The origin of modern disjunct plant distributions in the Brazilian Highlands with strong floristic affinities
to distant montane rainforests of isolated mountaintops in the northeast and northern Amazonia and
the Guyana Shield remains unknown. We tested the hypothesis that these unexplained biogeographical
patterns reflect former ecosystem rearrangements sustained by widespread plant migrations possibly
due to climatic patterns that are very dissimilar from present-day conditions. To address this issue, we
mapped the presence of the montane arboreal taxa Araucaria, Podocarpus, Drimys, Hedyosmum, Ilex,
Myrsine, Symplocos, and Weinmannia, and cool-adapted plants in the families Myrtaceae, Ericaceae, and
Arecaceae (palms) in 29 palynological records during Heinrich Stadial 1 Event, encompassing a latitudinal
range of 30°S to 0°S. In addition, Principal Component Analysis and Species Distribution Modelling were
used to represent past and modern habitat suitability for Podocarpus and Araucaria. The data reveals
two long-distance patterns of plant migration connecting south/southeast to northeastern Brazil and
Amazonia with a third short route extending from one of them. Their paleofloristic compositions suggest
a climatic scenario of abundant rainfall and relative lower continental surface temperatures, possibly
intensified by the effects of polar air incursions forming cold fronts into the Brazilian Highlands. Although
these taxa are sensitive to changes in temperature, the combined pollen and speleothems proxy data
indicate that this montane rainforest expansion during Heinrich Stadial 1 Event was triggered mainly by
a less seasonal rainfall regime from the subtropics to the equatorial region.This work was funded by FAPESP research grant 2015/50683-2 to P.E. De Oliveira, VULPES Project, Belmount
Forum
Nitrogen and Carbon Isotopic Dynamics of Subarctic Soils and Plants in Southern Yukon Territory and its Implications for Paleoecological and Paleodietary Studies
We examine here the carbon and nitrogen isotopic compositions of bulk soils (8 topsoil and 7 subsoils, including two soil profiles) and five different plant parts of 79 C3 plants from two main functional groups: herbs and shrubs/subshrubs, from 18 different locations in grasslands of southern Yukon Territory, Canada (eastern shoreline of Kluane Lake and Whitehorse area). The Kluane Lake region in particular has been identified previously as an analogue for Late Pleistocene eastern Beringia. All topsoils have higher average total nitrogen δ15N and organic carbon δ13C than plants from the same sites with a positive shift occurring with depth in two soil profiles analyzed. All plants analyzed have an average whole plant δ13C of −27.5 ± 1.2 ‰ and foliar δ13C of ±28.0 ± 1.3 ‰, and average whole plant δ15N of −0.3 ± 2.2 ‰ and foliar δ15N of ±0.6 ± 2.7 ‰. Plants analyzed here showed relatively smaller variability in δ13C than δ15N. Their average δ13C after suitable corrections for the Suess effect should be suitable as baseline for interpreting diets of Late Pleistocene herbivores that lived in eastern Beringia. Water availability, nitrogen availability, spacial differences and intra-plant variability are important controls on δ15N of herbaceous plants in the study area. The wider range of δ15N, the more numerous factors that affect nitrogen isotopic composition and their likely differences in the past, however, limit use of the modern N isotopic baseline for vegetation in paleodietary models for such ecosystems. That said, the positive correlation between foliar δ15N and N content shown for the modern plants could support use of plant δ15N as an index for plant N content and therefore forage quality. The modern N isotopic baseline cannot be applied directly to the past, but it is prerequisite to future efforts to detect shifts in N cycling and forage quality since the Late Pleistocene through comparison with fossil plants from the same region