2,233 research outputs found

    Vacuum field correlations and three-body Casimir-Polder potential with one excited atom

    Full text link
    The three-body Casimir-Polder potential between one excited and two ground-state atoms is evaluated. A physical model based on the dressed field correlations of vacuum fluctuations is used, generalizing a model previously introduced for three ground-state atoms. Although the three-body potential with one excited atom is already known in the literature, our model gives new insights on the nature of non-additive Casimir-Polder forces with one or more excited atoms.Comment: 9 page

    Methodological factors influencing measurement and processing of plasma reelin in humans

    Get PDF
    BACKGROUND: Reelin, intensively studied as an extracellular protein that regulates brain development, is also expressed in a variety of tissues and a circulating pool of reelin exists in adult mammals. Here we describe the methodological and biological foundation for carrying out and interpreting clinical studies of plasma reelin. RESULTS: Reelin in human plasma was sensitive to proteolysis, freeze-thawing and heating during long-term storage, sample preparation and electrophoresis. Reelin in plasma was a dimer under denaturing conditions. Boiling of samples resulted in laddering, suggesting that each of the 8 repeats expressed in reelin contains a heat-labile covalent bond susceptible to breakage. Urinary-type and tissue-type plasminogen activator converted reelin to a discrete 310 kDa fragment co-migrating with the major immunoreactive reelin fragment seen in plasma and also detected in brain. (In contrast, plasmin produced a spectrum of smaller unstable reelin fragments.) We examined archival plasma of 10 pairs of age-matched male individuals differing in repeat length of a CGG repeat polymorphism of the 5'-untranslated region of the reelin gene (both alleles < 11 repeats vs. one allele having >11 repeats). Reelin 310 kDa band content was lower in subjects having the long repeats in all 10 pairs, by 25% on average (p < 0.001). In contrast, no difference was noted for amyloid precursor protein. CONCLUSIONS: Our studies indicate the need for caution in measuring reelin in archival blood samples, and suggest that assays of plasma reelin should take into account three dimensions that might vary independently: a) the total amount of reelin protein; b) the relative amounts of reelin vs. its proteolytic processing products; and c) the aggregation state of the native protein. Reelin-plasminogen activator interactions may affect their roles in synaptic plasticity. Our results also suggest that the human CGG repeat polymorphism affects reelin gene expression, and may affect susceptibility to human disease

    Differential Predictors of Response to Early Start Denver Model vs. Early Intensive Behavioral Intervention in Young Children with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis

    Get PDF
    The effectiveness of early intensive interventions for Autism Spectrum Disorder (ASD) is now well-established, but there continues to be great interindividual variability in treatment response. The purpose of this systematic review is to identify putative predictors of response to two different approaches in behavioral treatment: Early Intensive Behavioral Interventions (EIBI) and the Early Start Denver Model (ESDM). Both are based upon the foundations of Applied Behavioral Analysis (ABA), but the former is more structured and therapist-driven, while the latter is more naturalistic and child-driven. Four databases (EmBase, PubMed, Scopus and WebOfScience) were systematically screened, and an additional search was conducted in the reference lists of relevant articles. Studies were selected if participants were children with ASD aged 12-48 months at intake, receiving either EIBI or ESDM treatment. For each putative predictor, p-values from different studies were combined using Fisher's method. Thirteen studies reporting on EIBI and eleven on ESDM met the inclusion criteria. A higher IQ at intake represents the strongest predictor of positive response to EIBI, while a set of social cognitive skills, including intention to communicate, receptive and expressive language, and attention to faces, most consistently predict response to ESDM. Although more research will be necessary to reach definitive conclusions, these findings begin to shed some light on patient characteristics that are predictive of preferential response to EIBI and ESDM, and may provide clinically useful information to begin personalizing treatment

    Metastatic tumors to the stomach: clinical and endoscopic features.

    Get PDF
    AIM: To evaluate the clinical and endoscopic patterns in a large series of patients with metastatic tumors in the stomach. METHODS: A total of 64 patients with gastric metastases from solid malignant tumors were retrospectively examined between 1990 and 2005. The clinicopathological findings were reviewed along with tumor characteristics such as endoscopic pattern, location, size and origin of the primary sites. RESULTS: Common indications for endoscopy were anemia, bleeding and epigastric pain. Metastases presented as solitary (62.5%) or multiple (37.5%) tumors were mainly located in the middle or upper third of stomach. The main primary metastatic tumors were from breast and lung cancer and malignant melanoma. CONCLUSION: As the prognosis of cancer patients has been improving gradually, gastrointestinal (GI) metastases will be encountered more often. Endoscopic examinations should be conducted carefully in patients with malignancies, and endoscopic biopsies and information on the patient's clinical history are useful for correct diagnosis of gastric metastases

    Delocalization effects in singlet fission: Comparing models with two and three interacting molecules

    Get PDF
    We present surface hopping simulations of singlet fission in 2,5-bis(fluorene-9-ylidene)-2,5-dihydrothiophene (ThBF). In particular, we performed simulations based on quantum mechanics/molecular mechanics (QM/MM) schemes in which either two or three ThBF molecules are inserted in the QM region and embedded in their MM crystal environment. Our aim was to investigate the changes in the photodynamics that are brought about by extending the delocalization of the excited states beyond the minimal model of a dimer. In the simulations based on the trimer model, compared to the dimer-based ones, we observed a faster time evolution of the state populations, with the largest differences associated with both the rise and decay times for the intermediate charge transfer states. Moreover, for the trimer, we predicted a singlet fission quantum yield of ∼204%, which is larger than both the one extracted for the dimer (∼179%) and the theoretical upper limit of 200% for the dimer-based model of singlet fission. Although our study cannot account for the effects of extending the delocalization beyond three molecules, our findings clearly indicate how and why the singlet fission dynamics can be affected

    Sas-4 colocalizes with the ciliary rootlets of the drosophila sensory organs

    Get PDF
    The Drosophila eye displays peculiar sensory organs of unknown function, the mechanosensory bristles, that are intercalated among the adjacent ommatidia. Like the other Drosophila sensory organs, the mechanosensory bristles consist of a bipolar neuron and two tandemly aligned centrioles, the distal of which nucleates the ciliary axoneme and represents the starting point of the ciliary rootlets. We report here that the centriole associated protein Sas-4 colocalizes with the short ciliary rootlets of the mechanosensory bristles and with the elongated rootlets of chordotonal and olfactory neurons. This finding suggests an unexpected cytoplasmic localization of Sas-4 protein and points to a new underscored role for this protein. Moreover, we observed that the sheath cells associated with the sensory neurons also display two tandemly aligned centrioles but lacks ciliary axonemes, suggesting that the dendrites of the sensory neurons are dispensable for the assembly of aligned centrioles and rootlets

    Surface Hopping Dynamics with the Frenkel Exciton Model in a Semiempirical Framework

    Get PDF
    We present an implementation of the Frenkel exciton model in the framework of the semiempirical floating occupation molecular orbitals-configuration interaction (FOMO-CI) electronic structure method, aimed at simulating the dynamics of multichromophoric systems, in which excitation energy transfer can occur, by a very efficient approach. The nonadiabatic molecular dynamics is here dealt with by the surface hopping method, but the implementation we proposed is compatible with other dynamical approaches. The exciton coupling is computed either exactly, within the semiempirical approximation considered, or by resorting to transition atomic charges. The validation of our implementation is carried out on the trans-azobenzeno-2S-phane (2S-TTABP), formed by two azobenzene units held together by sulfur bridges, taken as a minimal model of multichromophoric systems, in which both strong and weak exciton couplings are present

    Cell-to-Cell Interactions during Early Drosophila Oogenesis: An Ultrastructural Analysis

    Get PDF
    Drosophila oogenesis requires the subsequent growth of distinct egg chambers each containing a group of sixteen germline cells surrounded by a simple epithelium of follicle cells. The oocyte occupies a posterior position within the germ cells, thus giving a distinct asymmetry to the egg chamber. Although this disposition is critical for the formation of the anterior-posterior axis of the embryo, the interplay between somatic and germ cells during the early stages of oogenesis remains an open question. We uncover by stage 2, when the egg chambers leaved the germarium, some unique spatial interactions between the posterior follicle cells and the oocyte. These interactions are restricted to the surface of the oocyte over the centriole cluster that formed during early oogenesis. Moreover, the posterior follicle cells in front of the oocyte display a convoluted apical membrane with extensive contacts, whereas the other follicle cells have a flat apical surface without obvious surface protrusions. In addition, the germ cells located at the posterior end of the egg chamber have very elongated protrusions that come into contact with each other or with facing follicle cells. These observations point to distinct polarization events during early oogenesis supporting previous molecular data of an inherent asymmetry between the anterior and the posterior regions of the egg chambers

    The Microtubule-Depolymerizing Kinesin-13 Klp10A Is Enriched in the Transition Zone of the Ciliary Structures of Drosophila melanogaster

    Get PDF
    The precursor of the flagellar axoneme is already present in the primary spermatocytes of Drosophila melanogaster. During spermatogenesis each primary spermatocyte shows a centriole pair that moves to the cell membrane and organizes an axoneme-based structure, the cilium-like region (CLR). The CLRs persist through the meiotic divisions and are inherited by young spermatids. During spermatid differentiation the ciliary caps elongate giving rise to the sperm axoneme. Mutations in Klp10A, a kinesin-13 of Drosophila, results in defects of centriole/CLR organization in spermatocytes and of ciliary cap assembly in elongating spermatids. Reduced Klp10A expression also results in strong structural defects of sensory type I neurons. We show, here, that this protein displays a peculiar localization during male gametogenesis. The Klp10A signal is first detected at the distal ends of the centrioles when they dock to the plasma membrane of young primary spermatocytes. At the onset of the first meiotic prometaphase, when the CLRs reach their full size, Klp10A is enriched in a distinct narrow area at the distal end of the centrioles and persists in elongating spermatids at the base of the ciliary cap. We conclude that Klp10A could be a core component of the ciliary transition zone in Drosophila
    • …
    corecore