388 research outputs found

    The effects of Time-Variable Absorption due to Gamma-Ray Bursts In Active Galactic Nuclei Accretion Disks

    Full text link
    Both long and short gamma-ray bursts (GRBs) are expected to occur in the dense environments of active galactic nuclei (AGN) accretion disks. As these bursts propagate through the disks they live in, they photoionize the medium causing time-dependent opacity that results in transients with unique spectral evolution. In this paper we use a line-of-sight radiation transfer code coupling metal and dust evolution to simulate the time-dependent absorption that occurs in the case of both long and short GRBs. Through these simulations, we investigate the parameter space in which dense environments leave a potentially observable imprint on the bursts. Our numerical investigation reveals that time dependent spectral evolution is expected for central supermassive black hole masses between 10510^5 and 5×1075 \times 10^7 solar masses in the case of long GRBs, and between 10410^4 and 10710^7 solar masses in the case of short GRBs. Our findings can lead to the identification of bursts exploding in AGN disk environments through their unique spectral evolution coupled with a central location. In addition, the study of the time-dependent evolution would allow for studying the disk structure, once the identification with an AGN has been established. Finally, our findings lead to insight into whether GRBs contribute to the AGN emission, and which kind, thus helping to answer the question of whether GRBs can be the cause of some of the as-of-yet unexplained AGN time variability

    Intrinsic properties of the engine and jet that powered the short gamma-ray burst associated with GW170817

    Get PDF
    GRB 170817A was a subluminous short gamma-ray burst detected about 1.74 s after the gravitational wave signal GW170817 from a binary neutron star (BNS) merger. It is now understood as an off-axis event powered by the cocoon of a relativistic jet pointing 15 to 30 degrees away from the direction of observation. The cocoon was energized by the interaction of the incipient jet with the non-relativistic baryon wind from the merger remnant, resulting in a structured outflow with a narrow core and broad wings. In this paper, we couple the observational constraints on the structured outflow with a model for the jet-wind interaction to constrain the intrinsic properties with which the jet was launched by the central engine, including its time delay from the merger event. Using wind prescriptions inspired by magnetized BNS merger simulations, we find that the jet was launched within about 0.4 s from the merger, implying that the 1.74 s observed delay was dominated by the fireball propagation up to the photospheric radius. We also constrain, for the first time for any gamma-ray burst, the jet opening angle at injection and set a lower limit to its asymptotic Lorentz factor. These findings suggest an initially Poynting-flux dominated jet, launched via electromagnetic processes. If the jet was powered by an accreting black hole, they also provide a significant constraint on the survival time of the metastable neutron star remnant.Comment: Accepted for publication in Ap
    • …
    corecore