51 research outputs found
Inflation with a constant ratio of scalar and tensor perturbation amplitudes
The single scalar field inflationary models that lead to scalar and tensor
perturbation spectra with amplitudes varying in direct proportion to one
another are reconstructed by solving the Stewart-Lyth inverse problem to
next-to-leading order in the slow-roll approximation.
The potentials asymptote at high energies to an exponential form,
corresponding to power law inflation, but diverge from this model at low
energies, indicating that power law inflation is a repellor in this case. This
feature implies that a fine-tuning of initial conditions is required if such
models are to reproduce the observations. The required initial conditions might
be set through the eternal inflation mechanism.
If this is the case, it will imply that the spectral indices must be nearly
constant, making the underlying model observationally indistinguishable from
power law inflation.Comment: 20 pages, 7 figures. Major changes to the Introduction following
referee's comments. One figure added. Some other minor changes. No conclusion
was modifie
Minimum mass-radius ratio for charged gravitational objects
We rigorously prove that for compact charged general relativistic objects
there is a lower bound for the mass-radius ratio. This result follows from the
same Buchdahl type inequality for charged objects, which has been extensively
used for the proof of the existence of an upper bound for the mass-radius
ratio. The effect of the vacuum energy (a cosmological constant) on the minimum
mass is also taken into account. Several bounds on the total charge, mass and
the vacuum energy for compact charged objects are obtained from the study of
the Ricci scalar invariants. The total energy (including the gravitational one)
and the stability of the objects with minimum mass-radius ratio is also
considered, leading to a representation of the mass and radius of the charged
objects with minimum mass-radius ratio in terms of the charge and vacuum energy
only.Comment: 19 pages, accepted by GRG, references corrected and adde
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
The Dynamics of Brane-World Cosmological Models
Brane-world cosmology is motivated by recent developments in string/M-theory
and offers a new perspective on the hierarchy problem. In the brane-world
scenario, our Universe is a four-dimensional subspace or {\em brane} embedded
in a higher-dimensional {\em bulk} spacetime. Ordinary matter fields are
confined to the brane while the gravitational field can also propagate in the
bulk, leading to modifications of Einstein's theory of general relativity at
high energies. In particular, the Randall-Sundrum-type models are
self-consistent and simple and allow for an investigation of the essential
non-linear gravitational dynamics. The governing field equations induced on the
brane differ from the general relativistic equations in that there are nonlocal
effects from the free gravitational field in the bulk, transmitted via the
projection of the bulk Weyl tensor, and the local quadratic energy-momentum
corrections, which are significant in the high-energy regime close to the
initial singularity. In this review we discuss the asymptotic dynamical
evolution of spatially homogeneous brane-world cosmological models containing
both a perfect fluid and a scalar field close to the initial singularity. Using
dynamical systems techniques it is found that, for models with a physically
relevant equation of state, an isotropic singularity is a past-attractor in all
orthogonal spatially homogeneous models (including Bianchi type IX models). In
addition, we describe the dynamics in a class of inhomogeneous brane-world
models, and show that these models also have an isotropic initial singularity.
These results provide support for the conjecture that typically the initial
cosmological singularity is isotropic in brane-world cosmology.Comment: Einstein Centennial Review Article: to appear in CJ
Sensitive intracavity photoacoustic measurements with a CO2 waveguide laser
Contains fulltext :
6436.pdf (publisher's version ) (Open Access
- …