36,445 research outputs found
Gribov ambiguities at the Landau -- maximal Abelian interpolating gauge
In a previous work, we presented a new method to account for the Gribov
ambiguities in non-Abelian gauge theories. The method consists on the
introduction of an extra constraint which directly eliminates the infinitesimal
Gribov copies without the usual geometric approach. Such strategy allows to
treat gauges with non-hermitian Faddeev-Popov operator. In this work, we apply
this method to a gauge which interpolates among the Landau and maximal Abelian
gauges. The result is a local and power counting renormalizable action, free of
infinitesimal Gribov copies. Moreover, the interpolating tree-level gluon
propagator is derived.Comment: Several changes: figures removed, typos corrected and discussions
included. 24 pages, to appear in EPJ
On the elimination of infinitesimal Gribov ambiguities in non-Abelian gauge theories
An alternative method to account for the Gribov ambiguities in gauge theories
is presented. It is shown that, to eliminate Gribov ambiguities, at
infinitesimal level, it is required to break the BRST symmetry in a soft
manner. This can be done by introducing a suitable extra constraint that
eliminates the infinitesimal Gribov copies. It is shown that the present
approach is consistent with the well established known cases in the literature,
i.e., the Landau and maximal Abelian gauges. The method is valid for gauges
depending exclusively on the gauge field and is restricted to classical level.
However, occasionally, we deal with quantum aspects of the technique, which are
used to improve the results.Comment: 29 pp. No figures. Discussions added. Final version to appear in EPJ
Space-time Torsion and Neutrino Oscillations in Vacuum
The objective of this study is to verify the consistency of the prescription
of alternative minimum coupling (connection) proposed by the Teleparallel
Equivalent to General Relativity (TEGR) for the Dirac equation. With this aim,
we studied the problem of neutrino oscillations in Weitzenbock space-time in
the Schwarzschild metric. In particular, we calculate the phase dynamics of
neutrinos. The relation of spin of the neutrino with the space-time torsion is
clarified through the determination of the phase differences between spin
eigenstates of the neutrinos.Comment: 07 pages, no figure
Vortices in the presence of a nonmagnetic atom impurity in 2D XY ferromagnets
Using a model of nonmagnetic impurity potential, we have examined the
behavior of planar vortex solutions in the classical two-dimensional XY
ferromagnets in the presence of a spin vacancy localized out of the vortex
core. Our results show that a spinless atom impurity gives rise to an effective
potential that repels the vortex structure.Comment: 6 pages, 2 figures, RevTex
Emergence of skyrmion lattices and bimerons in chiral magnetic thin films with nonmagnetic impurities
Skyrmions are topologically protected field structures with particlelike characteristics that play important roles in several areas of science. Recently, skyrmions have been directly observed in chiral magnets. Here, we investigate the effects of pointlike nonmagnetic impurities on the distinct initial states (random or helical ones) and on the formation of the skyrmion crystal in a discrete lattice. Using Monte Carlo techniques, we have found that even a small percentage of spin vacancies present in the chiral magnetic thin film considerably affects the skyrmion order. The main effects of impurities are somewhat similar to thermal effects. The presence of these spin vacancies also induces the formation of bimerons in both the helical and skyrmion states. We also investigate how adjacent impurities forming a hole affect the skyrmion crystal
- …