43,366 research outputs found

    Simulation of Transport and Gain in Quantum Cascade Lasers

    Full text link
    Quantum cascade lasers can be modeled within a hierarchy of different approaches: Standard rate equations for the electron densities in the levels, semiclassical Boltzmann equation for the microscopic distribution functions, and quantum kinetics including the coherent evolution between the states. Here we present a quantum transport approach based on nonequilibrium Green functions. This allows for quantitative simulations of the transport and optical gain of the device. The division of the current density in two terms shows that semiclassical transitions are likely to dominate the transport for the prototype device of Sirtori et al. but not for a recent THz-laser with only a few layers per period. The many particle effects are extremely dependent on the design of the heterostructure, and for the case considered here, inclusion of electron-electron interaction at the Hartree Fock level, provides a sizable change in absorption but imparts only a minor shift of the gain peak.Comment: 12 pages, 5 figures included, to appear in in "Advances in Solid State Physics", ed. by B. Kramer (Springer 2003

    A computationally efficient method for calculating the maximum conductance of disordered networks: Application to 1-dimensional conductors

    Full text link
    Random networks of carbon nanotubes and metallic nanowires have shown to be very useful in the production of transparent, conducting films. The electronic transport on the film depends considerably on the network properties, and on the inter-wire coupling. Here we present a simple, computationally efficient method for the calculation of conductance on random nanostructured networks. The method is implemented on metallic nanowire networks, which are described within a single-orbital tight binding Hamiltonian, and the conductance is calculated with the Kubo formula. We show how the network conductance depends on the average number of connections per wire, and on the number of wires connected to the electrodes. We also show the effect of the inter-/intra-wire hopping ratio on the conductance through the network. Furthermore, we argue that this type of calculation is easily extendable to account for the upper conductivity of realistic films spanned by tunneling networks. When compared to experimental measurements, this quantity provides a clear indication of how much room is available for improving the film conductivity.Comment: 7 pages, 5 figure

    Multiscale Fractal Descriptors Applied to Nanoscale Images

    Full text link
    This work proposes the application of fractal descriptors to the analysis of nanoscale materials under different experimental conditions. We obtain descriptors for images from the sample applying a multiscale transform to the calculation of fractal dimension of a surface map of such image. Particularly, we have used the}Bouligand-Minkowski fractal dimension. We applied these descriptors to discriminate between two titanium oxide films prepared under different experimental conditions. Results demonstrate the discrimination power of proposed descriptors in such kind of application

    Upper bound for the conductivity of nanotube networks

    Full text link
    Films composed of nanotube networks have their conductivities regulated by the junction resistances formed between tubes. Conductivity values are enhanced by lower junction resistances but should reach a maximum that is limited by the network morphology. By considering ideal ballistic-like contacts between nanotubes we use the Kubo formalism to calculate the upper bound for the conductivity of such films and show how it depends on the nanotube concentration as well as on their aspect ratio. Highest measured conductivities reported so far are approaching this limiting value, suggesting that further progress lies with nanowires other than nanotubes.Comment: 3 pages, 1 figure. Minor changes. Accepted for publication in Applied Physics Letter

    Formas de fósforo em solo submetido à aplicação de lodo celulósico.

    Get PDF
    A disposição de resíduos de forma segura é um dos grandes desafios da atividade industrial. A aplicação do resíduo celulósico como insumo em áreas de plantios florestais é uma forma atraente de destinação, que pode resolver o problema ambiental de disposição ao mesmo tempo em que contribui na ciclagem e reposição de nutrientes retirados com a colheita florestal. O fósforo é um dos nutrientes mais aplicados nestes plantios em função dos baixos teores observados na maioria dos solos do Brasil, onerando os custos de fertilização agrícola e florestal. O objetivo do trabalho foi alterações na composição de formas de fósforo em CAMBISSOLO HÚMICO Distrófico. Para isso, doses de lodo celulósico foram aplicadas superficialmente em área plantada com Pinus taeda em 2006, imediatamente após o plantio das mudas. Em amostras coletadas na camada de 0 a 5 cm, em 2009, teores de fósforo total, orgânico, inorgânico e solúvel (Mehlich-1) foram determinados. O lodo aplicado aumentou linearmente os teores de fósforo orgânico e total e não alterou os teores de fósforo inorgânico e os teores de fósforo lábil determinados por Mehlich-1.Resumo expandido

    Characterization of nanostructured material images using fractal descriptors

    Get PDF
    This work presents a methodology to the morphology analysis and characterization of nanostructured material images acquired from FEG-SEM (Field Emission Gun-Scanning Electron Microscopy) technique. The metrics were extracted from the image texture (mathematical surface) by the volumetric fractal descriptors, a methodology based on the Bouligand-Minkowski fractal dimension, which considers the properties of the Minkowski dilation of the surface points. An experiment with galvanostatic anodic titanium oxide samples prepared in oxalyc acid solution using different conditions of applied current, oxalyc acid concentration and solution temperature was performed. The results demonstrate that the approach is capable of characterizing complex morphology characteristics such as those present in the anodic titanium oxide.Comment: 8 pages, 5 figures, accepted for publication Physica
    corecore