73 research outputs found
Development of lateralization of the magnetic compass in a migratory bird
The magnetic compass of a migratory bird, the European robin (Erithacus rubecula), was shown to be lateralized in favour of the right eye/left brain hemisphere. However, this seems to be a property of the avian magnetic compass that is not present from the beginning, but develops only as the birds grow older. During first migration in autumn, juvenile robins can orient by their magnetic compass with their right as well as with their left eye. In the following spring, however, the magnetic compass is already lateralized, but this lateralization is still flexible: it could be removed by covering the right eye for 6 h. During the following autumn migration, the lateralization becomes more strongly fixed, with a 6 h occlusion of the right eye no longer having an effect. This change from a bilateral to a lateralized magnetic compass appears to be a maturation process, the first such case known so far in birds. Because both eyes mediate identical information about the geomagnetic field, brain asymmetry for the magnetic compass could increase efficiency by setting the other hemisphere free for other processes
Rethinking classic starling displacement experiments : evidence for innate or for learned migratory directions?
Funding for the present work came from the Spinoza Premium 2014 awarded to TP by the Netherlands Organization for Scientific Research (NWO), with supplementary funding from an anonymous donor, the Gieskes-Strijbis Fonds and the Ubbo Emmius Fonds of the University of Groningen. TO was supported by Rubicon a grant from NWO (ref. 019.172EN.011)In an attempt to encourage the discourse on sources of individual variation in seasonal migration patterns and the microevolution of bird migration, we here critically examine the published interpretations of a now classic displacement study with starlings Sturnus vulgaris. Based on the ring recoveries after experimental displacement towards the south and southeast of Dutch capture sites of over 18 000 hatchâyear and older starlings, in a series of analyses published in Ardea from 1958 to 1983, A. C. Perdeck established that displaced starlings showed appropriately changed orientations only when they were experienced. During both southward and northward migration, released adults navigated to an apparently previously learned goal (i.e. the wintering or the breeding area) by showing appropriately changed orientations. Juveniles showed appropriate directions when returning to the breeding grounds. In contrast, during their first southward migration displaced juveniles carried on in the direction (and possibly the distance) expected for their release at the Dutch capture site. From the midâ1970s this work has become cited as evidence for starlings demonstrating âinnateâ migratory directions. If the definition of innateness is ânot learned by the individual itselfâ, then there is a range of nonâinnate influences on development that are not ruled out by Perdeck's experimental outcomes. For example, young starlings might have carried on in the direction that they learned to migrate before being caught, e.g. by observing the migratory directions of experienced conspecifics. We argue that, despite over 60 citations to Perdeck as demonstrating innate migratory directions, the jury is out.Publisher PDFPeer reviewe
Sea buckthorn berries <i>Hippophae rhamnoides</i> L. predict size and composition of a great tit population <i>Parus major</i> L.
In seasonal environments variation in food abundance in the non-breeding season is thought to affect songbird population dynamics. In a unique tit-sea buckthorn berry system we can estimate the berry abundance and both the tit consumption and population dynamics. Six hundred nest boxes were available to great and blue tits Cyanistes caeruleus for breeding in spring and roosting in winter. We followed the dynamics including the recapture histories of individually marked great tits from 2008 to 2014. In each year we estimated 1) the winter sea buckthorn berry availability, 2) an index of berry consumption in December based on the colour of the faeces of roosting birds, 3) the number of breeding great and blue tits, 4) both recapture probability and the return rate of the great tits and 5) immigration rates. December berry abundance positively predicted the number of breeding pairs of both species in the subsequent season and great tit return rates in the second half of the winter. There was support for a sex specific berry effect on the adult return rate in the great tit: female return rate was associated less strongly to berry abundance than male return rate. This skewed the sex ratio of the local breeders in the following breeding season. Intriguingly, annual berry consumption in December was not related to berry abundance, and individuals consuming more berries tended to have slightly lower return rates. Reproductive rate was not related to berry abundance. There was hardly support for a relation between immigration rates of first year breeders and berry abundance. Taken together these results imply that berry stock not only affected population size but also the population composition through sex specific exchange with the surroundings. Since population density covaried with berry abundance, density dependent effects provide an alternative explanation for the patterns observed
(Micro)evolutionary changes and the evolutionary potential of bird migration
Seasonal migration is the yearly long-distance movement of individuals between their breeding and wintering grounds. Individuals from nearly every animal group exhibit this behavior, but probably the most iconic migration is carried out by birds, from the classic V-shape formation of geese on migration to the amazing nonstop long-distance flights undertaken by Arctic Terns Sterna paradisaea. In this chapter, we discuss how seasonal migration has shaped the field of evolution. First, this behavior is known to turn on and off quite rapidly, but controversy remains concerning where this behavior first evolved geographically and whether the ancestral state was sedentary or migratory (Fig. 7.1d, e). We review recent work using new analytical techniques to provide insight into this topic. Second, it is widely accepted that there is a large genetic basis to this trait, especially in groups like songbirds that migrate alone and at night precluding any opportunity for learning. Key hypotheses on this topic include shared genetic variation used by different populations to migrate and only few genes being involved in its control. We summarize recent work using new techniques for both phenotype and genotype characterization to evaluate and challenge these hypotheses. Finally, one topic that has received less attention is the role these differences in migratory phenotype could play in the process of speciation. Specifically, many populations breed next to one another but take drastically different routes on migration (Fig. 7.2). This difference could play an important role in reducing gene flow between populations, but our inability to track most birds on migration has so far precluded evaluations of this hypothesis. The advent of new tracking techniques means we can track many more birds with increasing accuracy on migration, and this work has provided important insight into migration's role in speciation that we will review here
Juvenile Songbirds Compensate for Displacement to Oceanic Islands during Autumn Migration
To what degree juvenile migrant birds are able to correct for orientation errors
or wind drift is still largely unknown. We studied the orientation of passerines
on the Faroe Islands far off the normal migration routes of European migrants.
The ability to compensate for displacement was tested in naturally occurring
vagrants presumably displaced by wind and in birds experimentally displaced 1100
km from Denmark to the Faroes. The orientation was studied in orientation cages
as well as in the free-flying birds after release by tracking departures using
small radio transmitters. Both the naturally displaced and the experimentally
displaced birds oriented in more easterly directions on the Faroes than was
observed in Denmark prior to displacement. This pattern was even more pronounced
in departure directions, perhaps because of wind influence. The clear
directional compensation found even in experimentally displaced birds indicates
that first-year birds can also possess the ability to correct for displacement
in some circumstances, possibly involving either some primitive form of true
navigation, or âsign postsâ, but the cues used for this are highly
speculative. We also found some indications of differences between species in
the reaction to displacement. Such differences might be involved in the
diversity of results reported in displacement studies so far
Exploration and refinement of migratory routes in long-lived birds
How migration routes develop in long-lived migratory animals remains poorly understood. Campioni et al. (2019) tracked the migration of immature and breeding Coryâs shearwaters and found that the timings and routes gradually changed with age. Young birds followed more exploratory routes at first, but gradually shortened and defined them as they matured, and they returned to the breeding grounds progressively earlier. These findings suggest that long-lived species start by exploring potentially suitable areas for the non-breeding season and progressively refine their migration route as they age
- âŚ