275 research outputs found

    Contemporary Recommendation Systems on Big Data and Their Applications: A Survey

    Full text link
    This survey paper conducts a comprehensive analysis of the evolution and contemporary landscape of recommendation systems, which have been extensively incorporated across a myriad of web applications. It delves into the progression of personalized recommendation methodologies tailored for online products or services, organizing the array of recommendation techniques into four main categories: content-based, collaborative filtering, knowledge-based, and hybrid approaches, each designed to cater to specific contexts. The document provides an in-depth review of both the historical underpinnings and the cutting-edge innovations in the domain of recommendation systems, with a special focus on implementations leveraging big data analytics. The paper also highlights the utilization of prominent datasets such as MovieLens, Amazon Reviews, Netflix Prize, Last.fm, and Yelp in evaluating recommendation algorithms. It further outlines and explores the predominant challenges encountered in the current generation of recommendation systems, including issues related to data sparsity, scalability, and the imperative for diversified recommendation outputs. The survey underscores these challenges as promising directions for subsequent research endeavors within the discipline. Additionally, the paper examines various real-life applications driven by recommendation systems, addressing the hurdles involved in seamlessly integrating these systems into everyday life. Ultimately, the survey underscores how the advancements in recommendation systems, propelled by big data technologies, have the potential to significantly enhance real-world experiences.Comment: 34 pages, 8 figures, 2 tabl

    Advancing Space-Based Gravitational Wave Astronomy: Rapid Parameter Estimation via Normalizing Flows

    Full text link
    Gravitational wave (GW) astronomy is witnessing a transformative shift from terrestrial to space-based detection, with missions like Taiji at the forefront. While the transition brings unprecedented opportunities for exploring massive black hole binaries (MBHBs), it also imposes complex challenges in data analysis, particularly in parameter estimation amidst confusion noise. Addressing this gap, we utilize scalable normalizing flow models to achieve rapid and accurate inference within the Taiji environment. Innovatively, our approach simplifies the data's complexity, employs a transformation mapping to overcome the year-period time-dependent response function, and unveils additional multimodality in the arrival time parameter. Our method estimates MBHBs several orders of magnitude faster than conventional techniques, maintaining high accuracy even in complex backgrounds. These findings significantly enhance the efficiency of GW data analysis, paving the way for rapid detection and alerting systems and enriching our ability to explore the universe through space-based GW observation.Comment: 14 pages, 7 figures. Published versio
    corecore