6,599 research outputs found
Remotely sensed variables explain microhabitat selection and reveal buffering behaviours against warming in a climate-sensitive bird species
Fine-scale habitat selection modelling can allow a mechanistic understanding of habitat selection processes, enabling better assessments of the effects of climate and habitat changes on biodiversity. Remotely sensed data provide an ever-increasing amount of environmental and climatic variables at high spatio-temporal resolutions, and a unique opportunity to produce fine-scale habitat models particularly useful in challenging environments, such as high-elevation areas. Working at a 10-m spatial resolution, we assessed the value of remotely sensed data for investigating foraging habitat selection (in relation to topography, microclimate, land cover) in nestling-rearing white-winged snowfinch (Montifringilla nivalis), a high-elevation species highly sensitive to climate change. Adult snowfinches foraged at locations with intermediate vegetation cover and higher habitat heterogeneity, also avoiding extremely warm or extremely cold microclimates. Temperature interacted with other environmental drivers in defining habitat selection, highlighting trade-offs between habitat profitability and thermoregulation: snowfinches likely adopted mechanisms of behavioural buffering against physiologically stressful conditions by selecting for cooler, shaded and more snowy foraging grounds at higher temperatures. Our results matched those from previous studies based on accurate field measurements, confirming the species' reliance on climate-sensitive microhabitats (snow patches and low-sward grassland, in heterogeneous patches) and the usefulness of satellite-derived fine-scale modelling. Habitat suitability models built on remotely sensed predictors can provide a cost-effective method for periodic monitoring of species' habitats both at fine grain and over large extents. Fine-scale models also enhance our understanding of the actual drivers of (micro)habitat selection and of possible buffering behaviours against warming, allowing more accurate and robust distribution models, finer predictions of potential future changes and carefully targeted conservation strategies and habitat management
Location of the Energy Levels of the Rare-Earth Ion in BaF2 and CdF2
The location of the energy levels of rare-earth (RE) elements in the energy
band diagram of BaF2 and CdF2 crystals is determined. The role of RE3+ and RE2+
ions in the capture of charge carriers, luminescence, and the formation of
radiation defects is evaluated. It is shown that the substantial difference in
the luminescence properties of BaF2:RE and CdF2:RE is associated with the
location of the excited energy levels in the band diagram of the crystals
NMR and dc-susceptibility studies of NaVGe2O6
We report the results of measurements of the dc magnetic susceptibility
chi(T) and of the 23Na nuclear magnetic resonance (NMR) response of NaVGe2O6, a
material in which the V ions form a network of interacting one-dimensional spin
S=1 chains. The experiments were made at temperatures between 2.5 and 300 K.
The chi(T) data suggest that the formation of the expected low-temperature
Haldane phase is intercepted by an antiferromagnetic phase transition at 18 K.
The transition is also reflected in the 23Na NMR spectra and the corresponding
spin-lattice relaxation rate 1/T1(T). In the ordered phase, 1/T1(T) decreases
by orders of magnitude with decreasing temperature, indicating the formation of
a gap of the order of 12 K in the magnetic excitation spectrum.Comment: 10 pages, 15 figures; v2 with minor revisions of the tex
Coping with unpredictable environments: fine-tune foraging microhabitat use in relation to prey availability in an alpine species
Microhabitat utilisation holds a pivotal role in shaping a species’ ecological dynamics and stands as a crucial concern for effective conservation strategies. Despite its critical importance, microhabitat use has frequently been addressed as static, centering on microhabitat preference. Yet, a dynamic microhabitat use that allows individuals to adjust to fine-scale spatio-temporal prey fluctuations, becomes imperative for species thriving in challenging environments. High-elevation ecosystems, marked by brief growing seasons and distinct abiotic processes like snowmelt, winds, and solar radiation, feature an ephemeral distribution of key resources. To better understand species’ strategies in coping with these rapidly changing environments, we delved into the foraging behaviour of the white-winged snowfinch Montifringilla nivalis, an emblematic high-elevation passerine. Through studying microhabitat preferences during breeding while assessing invertebrate prey availability, we unveiled a highly flexible microhabitat use process. Notably, snowfinches exhibited specific microhabitat preferences, favoring grass and melting snow margins, while also responding to local invertebrate availability. This behaviour was particularly evident in snow-associated microhabitats and less pronounced amid tall grass. Moreover, our investigation underscored snowfinches’ fidelity to foraging sites, with over half located within 10 m of previous spots. This consistent use prevailed in snow-associated microhabitats and high-prey-density zones. These findings provide the first evidence of dynamic microhabitat use in high-elevation ecosystems and offer further insights into the crucial role of microhabitats for climate-sensitive species. They call for multi-faceted conservation strategies that go beyond identifying and protecting optimal thermal buffering areas in the face of global warming to also encompass locations hosting high invertebrate densities
Progress on the Development of an Iodine-fed Hall Effect Thruster
The paper deals with the results of an ongoing activity carried out by the Department of Civil and Industrial Engineering (DICI) and the Department of Chemistry and Industrial Chemistry (DCCI) of the University of Pisa (UniPi) in collaboration with SITAEL SpA, aimed at the development of technologies for Iodine-fed Hall Effect Thrusters. A feeding system architecture is described and the results of reduced order numerical models of the feeding system are illustrated, in both steady and unsteady state conditions. An activity for iodine interaction with materials is in progress. The experimental setups for material characterization tests are described. Material samples can be heated from room temperature up to 300 °C and exposed to iodine at high (soakage test) or low (flow test) concentration, simulating the condition at which the materials will undergo in the propulsion system, in the vacuum facility or in the spacecraft. Calibration and preliminary soakage test results are illustrated. On the thruster unit side, the candidate thruster and cathode are presented along with the modifications needed to operate them on iodine. Finally, a description of the foreseen test campaign and associated facilities is presented
Unconventional Charge Ordering in Na0.70CoO2 below 300 K
We present the results of measurements of the dc-magnetic susceptibility
chi(T) and the 23Na-NMR response of Na_{0.70}CoO_{2} at temperatures between 50
and 340 K. The chi(T) data suggest that for T > 75 K, the Co ions adopt an
effective configuration of Co^{3.4+}. The 23Na-NMR response reveals pronounced
anomalies near 250 and 295 K, but no evidence for magnetic phase transitions is
found in chi(T). Our data suggest the onset of a dramatic change in the Co
3d-electron spin dynamics at 295 K. This process is completed at 230 K. Our
results maybe interpreted as evidence for either a tendency to electron
localization or an unconventional charge-density wave phenomenon within the
cobalt oxide layer, CoO_2, 3d electron system near room temperature.Comment: 4 pages, 4 figures, re-submitted to Physical Review Letters. The
manuscript has been revised following the recommendations of the referees.
The discussion section contains substantial change
Lymphocyte reconstitution following autologous stem cell transplantation for progressive MS
BACKGROUND:
Autologous stem cell transplantation (ASCT) for progressive multiple sclerosis (MS) may reset the immune repertoire.
OBJECTIVE:
The objective of this paper is to analyse lymphocyte recovery in patients with progressive MS treated with ASCT.
METHODS:
Patients with progressive MS not responding to conventional treatment underwent ASCT following conditioning with high-dose cyclophosphamide and antithymocyte globulin. Lymphocyte subset analysis was performed before ASCT and for two years following ASCT. Neurological function was assessed by the EDSS before ASCT and for three years post-ASCT.
RESULTS:
CD4+ T-cells fell significantly post-transplant and did not return to baseline levels. Recent thymic emigrants and naĂŻve T-cells fell sharply post-transplant but returned to baseline by nine months and twelve months, respectively. T-regulatory cells declined post-transplant and did not return to baseline levels. Th1 and Th2 cells did not change significantly while Th17 cells fell post-transplant but recovered to baseline by six months. Neurological function remained stable in the majority of patients. Progression-free survival was 69% at three years.
CONCLUSION:
This study demonstrates major changes in the composition of lymphocyte subsets following ASCT for progressive MS. In particular, ablation and subsequent recovery of thymic output is consistent with the concept that ASCT can reset the immune repertoire in MS patients
Early-succession secondary forests following agropastoral abandonment are key winter habitats for the conservation of a priority bird in the European Alps
In contrast to old-growth forests, early-successional stands remain understudied despite potentially harbouring species of conservation interest. With this work, focused on hazel grouse Tetrastes bonasia, a cryptic and indicator species known to select for close-to-natural forests, we evaluated winter densities, home range, microhabitat selection and diet, combining DNA-based mark-recapture and metabarcoding from faecal samples. In total, 216 droppings, collected over 2 years along forest transects in the Italian Alps, were successfully genotyped and 43 individuals were identified. Density estimates were similar to values reported by other studies in the Alps with an average of 4.5 and 2.4 individuals/km2 in the first and second study year, respectively, and mean home ranges estimated at 0.95 km2. According to habitat selection models and eDNA-based diet analysis, hazel grouse selected early-succession secondary-growth forests formed after the abandonment of traditional agropastoral activities. These forests, mostly composed of hazel Corylus avellana, Norway spruce Picea abies and Sorbus spp., provided winter food resources and shelter. The diet analysis also highlighted forest arthropods as a non-negligible source of food. Birds avoided areas subject to intensive browsing by ungulates; small forest roads seasonally closed to traffic had positive influence on hazel grouse (i.e. higher abundance of droppings), while roads open to traffic had no effect. Importantly, despite the high coverage of mature forest habitats of Community Interest (53% of our study area), droppings were more abundant in non-listed early-succession secondary forests with similar plant composition. Our results suggest that forest succession after agropastoral abandonment may be beneficial for some forest birds of conservation interest, while acknowledging its negative effects on the previous grassland biodiversity. Graphical abstract: [Figure not available: see fulltext.
Potential distribution of a climate sensitive species, the White-winged Snowfinch Montifringilla nivalis in Europe
The White-winged Snowfinch Montifringilla nivalis nivalis is assumed to be highly threatened by climate change, but this high elevation species has been little studied and the current breeding distribution is accurately known only for a minor portion of its range. Here, we provide a detailed and spatially explicit identification of the potentially suitable breeding areas for the Snowfinch. We modelled suitable areas in Europe and compared them with the currently known distribution. We built a distribution model using 14,574 records obtained during the breeding period that integrated climatic, topographic and land-cover variables, working at a 2-km spatial resolution with MaxEnt. The model performed well and was very robust; average annual temperature was the most important occurrence predictor (optimum between c.-3°C and 0°; unsuitable conditions below -10° and above 5°). The current European breeding range estimated by BirdLife International was almost three times greater than that classified as potentially suitable by our model. Discrepancies between our model and the distribution estimated by BirdLife International were particularly evident in eastern Europe, where the species is poorly monitored. Southern populations are likely more isolated and at major risk because of global warming. These differences have important implications for the supposed national responsibility for conservation of the species and highlight the need for new investigations on the species in the eastern part of its European range
- …