65 research outputs found

    MucR binds multiple target sites in the promoter of its own gene and is a heat-stable protein: Is MucR a H-NS-like protein?

    Get PDF
    The protein MucR from Brucella spp. is involved in the expression regulation of genes necessary for host interaction and infection. MucR is a member of the Ros/MucR family, which comprises prokaryotic zinc-finger proteins and includes Ros from Agrobacterium tumefaciens and the Ml proteins from Mesorhizobium loti. MucR from Brucella spp. can regulate the expression of virulence genes and repress its own gene expression. Despite the well-known role played by MucR in the repression of its own gene, no target sequence has yet been identified in the mucR promoter gene. In this study, we provide the first evidence that MucR from Brucella abortus binds more than one target site in the promoter region of its own gene, suggesting a molecular mechanism by which this protein represses its own expression. Furthermore, a circular dichroism analysis reveals that MucR is a heat-stable protein. Overall, the results of this study suggest that MucR might resemble a H-NS protein

    Genetic and epigenetic mutations affect the DNA binding capability of human ZFP57 in transient neonatal diabetes type 1

    Get PDF
    AbstractIn the mouse, ZFP57 contains three classical Cys2His2 zinc finger domains (ZF) and recognizes the methylated TGCmetCGC target sequence using the first and the second ZFs. In this study, we demonstrate that the human ZFP57 (hZFP57) containing six Cys2His2 ZFs, binds the same methylated sequence through the third and the fourth ZFs, and identify the aminoacids critical for DNA interaction. In addition, we present evidences indicating that hZFP57 mutations and hypomethylation of the TNDM1 ICR both associated with Transient Neonatal Diabetes Mellitus type 1 result in loss of hZFP57 binding to the TNDM1 locus, likely causing PLAGL1 activation

    Host and Viral Zinc-Finger Proteins in COVID-19

    No full text
    An unprecedented effort to tackle the ongoing COVID-19 pandemic has characterized the activity of the global scientific community over the last two years. Hundreds of published studies have focused on the comprehension of the immune response to the virus and on the definition of the functional role of SARS-CoV-2 proteins. Proteins containing zinc fingers, both belonging to SARS-CoV-2 or to the host, play critical roles in COVID-19 participating in antiviral defenses and regulation of viral life cycle. Differentially expressed zinc finger proteins and their distinct activities could thus be important in determining the severity of the disease and represent important targets for drug development. Therefore, we here review the mechanisms of action of host and viral zinc finger proteins in COVID-19 as a contribution to the comprehension of the disease and also highlight strategies for therapeutic developments

    Relaxation of insulin-like growth factor-2 imprinting in rat cultured cells

    No full text
    The parental-specific expression of the insulin-like growth factor-2 (Igf-2) and H19 genes was studied in rat fibroblast cells derived from a 3 day-old first-generation hybrid animal obtained by crossing Fisher and Wistar strains (F x W cells). Results showed that the reciprocal imprinting of the Igf-2 and H19 genes was conserved in the rat tissues and in the derived F x W cells when cultured with frequent transfer. Igf-2 and H19 gene expression was coordinately up-regulated upon reaching confluence, but Igf-2 RNA levels were further increased in a time-dependent manner and the repressed stale of the maternal Igf-2 allele was progressively relaxed in cultures held in the confluent state and in the presence of low serum for more than 3 days. The active expression and relaxed imprinting status of the Igf-2 gene persisted over cell generations when the growth-constraining conditions were released by trypsinization and dilution. On the contrary, the imprinting of the H19 gene appeared to be unaffected by changes in growth conditions and its expression was down-regulated when the confluent cells were passaged. Methylation of the H19 promoter and Igf-2 coding regions was increased in the F x W cells extensively held under confluence and in the derived 'post-confluent' cultures. The heritable changes in the expression. and imprinting status of the Igf-2 and H19 genes observed in the F x W cells closely resembles events described in human embryonal cancers and cancer-predisposing syndromes. The occurrence of imprinting relaxation under strong growth-inhibitory conditions supports the hypothesis that it is an epigenetic change

    NMR structure and dynamics of the resuscitation promoting factor RpfC catalytic domain

    No full text
    Mycobacterium tuberculosis latent infection is maintained for years with no clinical symptoms and no adverse effects for the host. The mechanism through which dormant M. tuberculosis resuscitates and enters the cell cycle leading to tuberculosis is attracting much interest. The RPF family of proteins has been found to be responsible for bacteria resuscitation and normal proliferation. This family of proteins in M. tuberculosis is composed by five homologues (named RpfA-E) and understanding their conformational, structural and functional peculiarities is crucial to the design of therapeutic strategies.Therefore, we report the structural and dynamics characterization of the catalytic domain of RpfC from M. tubercolosis by combining Nuclear Magnetic Resonance, Circular Dichroism and Molecular Dynamics data.We also show how the formation of a disulfide bridge, highly conserved among the homologues, is likely to modulate the shape of the RpfC hydrophobic catalytic cleft. This might result in a protein function regulation via a "conformational editing" through a disulfide bond formation

    The solution structure of a specific GAGA factor-DNA complex reveals a modular binding mode

    No full text
    The structure of a complex between the DNA binding domain of the GAGA factor (GAGA-DBD) and an oligonucleotide containing its GAGAG consensus binding site has been determined by nuclear magnetic resonance spectroscopy. The GAGA-DBD comprises a single classical Cys2-His2 zinc finger core, and an N-terminal extension containing two highly basic regions, BR1 and BR2. The zinc finger core binds in the major groove and recognizes the first three GAG bases of the consensus in a manner similar to that seen in other classical zinc finger-DNA complexes. Unlike the latter, which require tandem zinc finger repeats with a minimum of two units for high affinity binding, the GAGA-DBD makes use of only a single finger complemented by BR1 and BR2. BR2 forms a helix that interacts in the major groove recognizing the last G of the consensus, while BR1 wraps around the DNA in the minor groove and recognizes the A in the fourth position of the consensus. The implications of the structure of the GAGA-DBD-DNA complex for chromatin remodelling are discussed

    Molecular structures of quinuclidinic neurokinin antagonists: 2-(2-phenylbenzylidene)-3-(2-X-benzylamino) derivatives

    No full text
    The solid-state molecular conformations and crystal structures of three analogues of the CP-96,345 molecule, an important nonpeptidic SP antagonist, namely the (±)-2-(3-phenylbenzilidene)-3-(2-benzylamino) quinuclidine, the o-chloro- and the o-methoxy-derivatives, have been determined by X-ray diffusion analyses and refined to final R values of 0.055, 0.045, and 0.056, respectively. All three molecules in the solid state show the same disposition of the substituents of the double bond and differences in the conformation mainly caused by the need of releasing intramolecular strains and/or nonbonded interactions. The observed molecular structures are compared to the reported solid-state structure of the CP-96,345 and correlated to the biological activity as NK antagonists
    • …
    corecore