29,319 research outputs found
f(R) as a dark energy fluid
We study the equations for the evolution of cosmological perturbations in
and conclude that this modified gravity model can
be expressed as a dark energy fluid at background and linearised perturbation
order. By eliminating the extra scalar degree of freedom known to be present in
such theories, we are able to characterise the evolution of the perturbations
in the scalar sector in terms of equations of state for the entropy
perturbation and anisotropic stress which are written in terms of the density
and velocity perturbations of the dark energy fluid and those in the matter, or
the metric perturbations. We also do the same in the much simpler vector and
tensor sectors. In order to illustrate the simplicity of this formulation, we
numerically evolve perturbations in a small number of cases.Comment: 12 pages, 5 figure
Measuring micro-organism gas production
Transducer, which senses pressure buildup, is easy to assemble and use, and rate of gas produced can be measured automatically and accurately. Method can be used in research, in clinical laboratories, and for environmental pollution studies because of its ability to detect and quantify rapidly the number of gas-producing microorganisms in water, beverages, and clinical samples
Quantized Lattice Dynamic Effects on the Spin-Peierls Transition
The density matrix renormalization group method is used to investigate the
spin-Peierls transition for Heisenberg spins coupled to quantized phonons. We
use a phonon spectrum that interpolates between a gapped, dispersionless
(Einstein) limit to a gapless, dispersive (Debye) limit. A variety of
theoretical probes are used to determine the quantum phase transition,
including energy gap crossing, a finite size scaling analysis, bond order
auto-correlation functions, and bipartite quantum entanglement. All these
probes indicate that in the antiadiabatic phonon limit a quantum phase
transition of the Berezinskii-Kosterlitz-Thouless type is observed at a
non-zero spin-phonon coupling, . An extrapolation from the
Einstein limit to the Debye limit is accompanied by an increase in for a fixed optical () phonon gap. We therefore conclude that the
dimerized ground state is more unstable with respect to Debye phonons, with the
introduction of phonon dispersion renormalizing the effective spin-lattice
coupling for the Peierls-active mode. We also show that the staggered spin-spin
and phonon displacement order parameters are unreliable means of determining
the transition.Comment: To be published in Phys. Rev.
Recommended from our members
The rocks from space initiative and the space safari
This paper reports the successes of a new initiative in the UK using electronic resources, such as virtual learning environments and e-classrooms, for planetary and space science public engagement activities
Fast iterative solution of reaction-diffusion control problems arising from chemical processes
PDE-constrained optimization problems, and the development of preconditioned iterative methods for the efficient solution of the arising matrix system, is a field of numerical analysis that has recently been attracting much attention. In this paper, we analyze and develop preconditioners for matrix systems that arise from the optimal control of reaction-diffusion equations, which themselves result from chemical processes. Important aspects in our solvers are saddle point theory, mass matrix representation and effective Schur complement approximation, as well as the outer (Newton) iteration to take account of the nonlinearity of the underlying PDEs
Individual differences in human annoyance response to noise
Individual variations in annoyance and in susceptibility to noise were studied to establish a finer definition of the ingredients of the human annoyance response. The study involved interactions among a heterogeneous sample of human subjects, various noise stimuli, and different physical environments of exposure. Significant differences in annoyance ratings among the six noise stimuli, all equated for peak sound pressure level, were found
Researching a Decade of ICT in Post-Secondary Education
This paper reviews published research on information and communication technology (ICT) in post-secondary education since 1998 and identifies the extent to which this research addresses government policy, indicating areas in which further research would be beneficial to meet the challenges contained in government reports. The paper is written to inform government agencies and researchers of the gaps in the research to date. The published papers were wide-ranging, informative and enriching in scope and evidenced the important role of ICT in post-secondary education. The majority of publications were based on empirical inquiry of successful small-scale case studies to guide present and future practice, though less research was evidenced to support other government directives, for example, the role of ICT in cross-institutional collaboration and the role of ICT to support sharing of teaching and resources. There was limited research on theoretical inquiry, providing original perspectives, ideas and ideals to shape future thinking and few cross-sector and inter-institutional studies identifying the role of ICT to improve teaching and learning. It was concluded that future research would benefit from a greater balance between empirical research and theoretical enquiry and to identify more strategically significant cross-institutional research to support the government’s vision of making Hong Kong a regional education hub.preprin
Extracting quantum dynamics from genetic learning algorithms through principal control analysis
Genetic learning algorithms are widely used to control ultrafast optical
pulse shapes for photo-induced quantum control of atoms and molecules. An
unresolved issue is how to use the solutions found by these algorithms to learn
about the system's quantum dynamics. We propose a simple method based on
covariance analysis of the control space, which can reveal the degrees of
freedom in the effective control Hamiltonian. We have applied this technique to
stimulated Raman scattering in liquid methanol. A simple model of two-mode
stimulated Raman scattering is consistent with the results.Comment: 4 pages, 5 figures. Presented at coherent control Ringberg conference
200
- …