5 research outputs found
An instability criterion for nonlinear standing waves on nonzero backgrounds
A nonlinear Schr\"odinger equation with repulsive (defocusing) nonlinearity
is considered. As an example, a system with a spatially varying coefficient of
the nonlinear term is studied. The nonlinearity is chosen to be repelling
except on a finite interval. Localized standing wave solutions on a non-zero
background, e.g., dark solitons trapped by the inhomogeneity, are identified
and studied. A novel instability criterion for such states is established
through a topological argument. This allows instability to be determined
quickly in many cases by considering simple geometric properties of the
standing waves as viewed in the composite phase plane. Numerical calculations
accompany the analytical results.Comment: 20 pages, 11 figure