87 research outputs found
Revisiting in vivo staining with alizarin red S - a valuable approach to analyse zebrafish skeletal mineralization during development and regeneration
Background
The correct evaluation of mineralization is fundamental for the study of skeletal development, maintenance, and regeneration. Current methods to visualize mineralized tissue in zebrafish rely on: 1) fixed specimens; 2) radiographic and μCT techniques, that are ultimately limited in resolution; or 3) vital stains with fluorochromes that are indistinguishable from the signal of green fluorescent protein (GFP)-labelled cells. Alizarin compounds, either in the form of alizarin red S (ARS) or alizarin complexone (ALC), have long been used to stain the mineralized skeleton in fixed specimens from all vertebrate groups. Recent works have used ARS vital staining in zebrafish and medaka, yet not based on consistent protocols. There is a fundamental concern on whether ARS vital staining, achieved by adding ARS to the water, can affect bone formation in juvenile and adult zebrafish, as ARS has been shown to inhibit skeletal growth and mineralization in mammals.
Results
Here we present a protocol for vital staining of mineralized structures in zebrafish with a low ARS concentration that does not affect bone mineralization, even after repetitive ARS staining events, as confirmed by careful imaging under fluorescent light. Early and late stages of bone development are equally unaffected by this vital staining protocol. From all tested concentrations, 0.01 % ARS yielded correct detection of bone calcium deposits without inducing additional stress to fish.
Conclusions
The proposed ARS vital staining protocol can be combined with GFP fluorescence associated with skeletal tissues and thus represents a powerful tool for in vivo monitoring of mineralized structures. We provide examples from wild type and transgenic GFP-expressing zebrafish, for endoskeletal development and dermal fin ray regeneration
Twistor methods for AdS5
We consider the application of twistor theory to five-dimensional anti-de
Sitter space. The twistor space of AdS is the same as the ambitwistor space
of the four-dimensional conformal boundary; the geometry of this correspondence
is reviewed for both the bulk and boundary. A Penrose transform allows us to
describe free bulk fields, with or without mass, in terms of data on twistor
space. Explicit representatives for the bulk-to-boundary propagators of scalars
and spinors are constructed, along with twistor action functionals for the free
theories. Evaluating these twistor actions on bulk-to-boundary propagators is
shown to produce the correct two-point functions.Comment: 24 pages, 4 figures. v2: typos fixed, published versio
An International Laboratory for Systems and Computational Neuroscience
The neural basis of decision-making has been elusive and involves the coordinated activity of multiple brain structures. This NeuroView, by the International Brain Laboratory (IBL), discusses their efforts to develop a standardized mouse decision-making behavior, to make coordinated measurements of neural activity across the mouse brain, and to use theory and analyses to uncover the neural computations that support decision-making. The neural basis of decision-making has been elusive and involves the coordinated activity of multiple brain structures. This NeuroView, by the International Brain Laboratory (IBL), discusses their efforts to develop a standardized mouse decision-making behavior, to make coordinated measurements of neural activity across the mouse brain, and to use theory and analyses to uncover the neural computations that support decision-making
Development of the Synarcual in the Elephant Sharks (Holocephali; Chondrichthyes): Implications for Vertebral Formation and Fusion
The synarcual is a structure incorporating multiple elements of two or more anterior vertebrae of the axial skeleton, forming immediately posterior to the cranium. It has been convergently acquired in the fossil group ‘Placodermi’, in Chondrichthyes (Holocephali, Batoidea), within the teleost group Syngnathiformes, and to varying degrees in a range of mammalian taxa. In addition, cervical vertebral fusion presents as an abnormal pathology in a variety of human disorders. Vertebrae develop from axially arranged somites, so that fusion could result from a failure of somite segmentation early in development, or from later heterotopic development of intervertebral bone or cartilage. Examination of early developmental stages indicates that in the Batoidea and the ‘Placodermi’, individual vertebrae developed normally and only later become incorporated into the synarcual, implying regular somite segmenta- tion and vertebral development. Here we show that in the holocephalan Callorhinchus milii, uniform and regular vertebral segmentation also occurs, with anterior individual vertebra developing separately with subsequent fusion into a synarcual. Vertebral elements forming directly behind the synarcual continue to be incorporated into the synarcual through growth. This appears to be a common pattern through the Vertebrata. Research into human disor- ders, presenting as cervical fusion at birth, focuses on gene misexpression studies in humans and other mammals such as the mouse. However, in chondrichthyans, vertebral fusion represents the normal morphology, moreover, taxa such Leucoraja (Batoidea) and Callorhinchus (Holocephali) are increasingly used as laboratory animals, and the Callor- hinchus genome has been sequenced and is available for study. Our observations on synarcual development in three major groups of early jawed vertebrates indicate that fusion involves heterotopic cartilage and perichondral bone/mineralised cartilage developing outside the regular skeleton. We suggest that chondrichthyans have potential as ideal extant models for identifying the genes involved in these processes, for application to human skeletal heterotopic disorders
Structural and micro-anatomical changes in vertebrae associated with idiopathic-type spinal curvature in the curveback guppy model
Background: The curveback lineage of guppy is characterized by heritable idiopathic-type spinal curvature thatdevelops during growth. Prior work has revealed several important developmental similarities to the human idiopathicscoliosis (IS) syndrome. In this study we investigate structural and histological aspects of the vertebrae that areassociated with spinal curvature in the curveback guppy and test for sexual dimorphism that might explain a femalebias for severe curve magnitudes in the population.Methods: Vertebrae were studied from whole-mount skeletal specimens of curved and non-curved adult males andfemales. A series of ratios were used to characterize structural aspects of each vertebra. A three-way analysis of variancetested for effects of sex, curvature, vertebral position along the spine, and all 2-way interactions (i.e., sex and curvature,sex and vertebra position, and vertebra position and curvature). Histological analyses were used to characterize microarchitecturalchanges in affected vertebrae and the intervertebral region.Results: In curveback, vertebrae that are associated with curvature demonstrate asymmetric shape distortion,migration of the intervertebral ligament, and vertebral thickening on the concave side of curvature. There is sexualdimorphism among curved individuals such that for several vertebrae, females have more slender vertebrae than domales. Also, in the region of the spine where lordosis typically occurs, curved and non-curved females have a reducedwidth at the middle of their vertebrae, relative to males.Conclusions: Based on similarities to human spinal curvatures and to animals with induced curves, the concaveconvexbiases described in the guppy suggest that there is a mechanical component to curve pathogenesis incurveback. Because idiopathic-type curvature in curveback is primarily a sagittal deformity, it is structurally more similarto Scheuermann kyphosis than IS. Anatomical differences between teleosts and humans make direct biomechanicalcomparisons difficult. However, study of basic biological systems involved in idiopathic-type spinal curvature incurveback may provide insight into the relationship between a predisposing aetiology, growth, and biomechanics.Further work is needed to clarify whether observed sex differences in vertebral characteristics are related to the femalebias for severe curves that is observed in the population
Expression of osterix Is Regulated by FGF and Wnt/β-Catenin Signalling during Osteoblast Differentiation
Osteoblast differentiation from mesenchymal cells is regulated by multiple signalling pathways.
Here we have analysed the roles of Fibroblast Growth Factor (FGF) and canonical
Wingless-type MMTV integration site (Wnt/β-Catenin) signalling pathways on zebrafish
osteogenesis. We have used transgenic and chemical interference approaches to manipulate
these pathways and have found that both pathways are required for osteoblast differentiation
in vivo. Our analysis of bone markers suggests that these pathways act at the same
stage of differentiation to initiate expression of the osteoblast master regulatory gene osterix
(osx). We use two independent approaches that suggest that osx is a direct target of these
pathways. Firstly, we manipulate signalling and show that osx gene expression responds
with similar kinetics to that of known transcriptional targets of the FGF and Wnt pathways.
Secondly, we have performed ChIP with transcription factors for both pathways and our
data suggest that a genomic region in the first intron of osx mediates transcriptional activation.
Based upon these data, we propose that FGF and Wnt/β-Catenin pathways act in part
by directing transcription of osx to promote osteoblast differentiation at sites of bone
formation
Molecular pedomorphism underlies craniofacial skeletal evolution in Antarctic notothenioid fishes
Background
Pedomorphism is the retention of ancestrally juvenile traits by adults in a descendant taxon. Despite its importance for evolutionary change, there are few examples of a molecular basis for this phenomenon. Notothenioids represent one of the best described species flocks among marine fishes, but their diversity is currently threatened by the rapidly changing Antarctic climate. Notothenioid evolutionary history is characterized by parallel radiations from a benthic ancestor to pelagic predators, which was accompanied by the appearance of several pedomorphic traits, including the reduction of skeletal mineralization that resulted in increased buoyancy. Results
We compared craniofacial skeletal development in two pelagic notothenioids, Chaenocephalus aceratus and Pleuragramma antarcticum, to that in a benthic species, Notothenia coriiceps, and two outgroups, the threespine stickleback and the zebrafish. Relative to these other species, pelagic notothenioids exhibited a delay in pharyngeal bone development, which was associated with discrete heterochronic shifts in skeletal gene expression that were consistent with persistence of the chondrogenic program and a delay in the osteogenic program during larval development. Morphological analysis also revealed a bias toward the development of anterior and ventral elements of the notothenioid pharyngeal skeleton relative to dorsal and posterior elements. Conclusions
Our data support the hypothesis that early shifts in the relative timing of craniofacial skeletal gene expression may have had a significant impact on the adaptive radiation of Antarctic notothenioids into pelagic habitats
Prediction of Protein Domain with mRMR Feature Selection and Analysis
The domains are the structural and functional units of proteins. With the avalanche of protein sequences generated in the postgenomic age, it is highly desired to develop effective methods for predicting the protein domains according to the sequences information alone, so as to facilitate the structure prediction of proteins and speed up their functional annotation. However, although many efforts have been made in this regard, prediction of protein domains from the sequence information still remains a challenging and elusive problem. Here, a new method was developed by combing the techniques of RF (random forest), mRMR (maximum relevance minimum redundancy), and IFS (incremental feature selection), as well as by incorporating the features of physicochemical and biochemical properties, sequence conservation, residual disorder, secondary structure, and solvent accessibility. The overall success rate achieved by the new method on an independent dataset was around 73%, which was about 28–40% higher than those by the existing method on the same benchmark dataset. Furthermore, it was revealed by an in-depth analysis that the features of evolution, codon diversity, electrostatic charge, and disorder played more important roles than the others in predicting protein domains, quite consistent with experimental observations. It is anticipated that the new method may become a high-throughput tool in annotating protein domains, or may, at the very least, play a complementary role to the existing domain prediction methods, and that the findings about the key features with high impacts to the domain prediction might provide useful insights or clues for further experimental investigations in this area. Finally, it has not escaped our notice that the current approach can also be utilized to study protein signal peptides, B-cell epitopes, HIV protease cleavage sites, among many other important topics in protein science and biomedicine
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
- …