8 research outputs found
Effects of different N fertilizers on the activity of Glomus mosseae and on grapevine nutrition and berry composition
Grapevine N fertilization may affect and be affected by arbuscular mycorrhizal (AM) fungal colonization and change berry composition. We studied the effects of different N fertilizers on AM fungal grapevine root colonization and sporulation, and on grapevine growth, nutrition, and berry composition, by conducting a 3.5-year pot study supplying grapevine plants with either urea, calcium nitrate, ammonium sulfate, or ammonium nitrate. We measured the percentage of AM fungal root colonization, AM fungal sporulation, grapevine shoot dry weight and number of leaves, nutrient composition (macro- and micronutrients), and grapevine berry soluble solids (total sugars or degrees Brix) and total acidity. Urea suppressed AM fungal root colonization and sporulation. Mycorrhizal grapevine plants had higher shoot dry weight and number of leaves than non-mycorrhizal and with a higher growth response with calcium nitrate as the N source. For the macronutrients P and K, and for the micronutrient B, leaf concentration was higher in mycorrhizal plants. Non-mycorrhizal plants had higher concentration of microelements Zn, Mn, Fe, and Cu than mycorrhizal. There were no differences in soluble solids (degrees Brix) in grapevine berries among mycorrhizal and non-mycorrhizal plants. However, non-mycorrhizal grapevine berries had higher acid content with ammonium nitrate, although they did not have better N nutrition and vegetative growth
Structural differences in arbuscular mycorrhizal symbioses: more than 100 years after Gallaud where next?
The original publication can be found at www.springerlink.comThis review commemorates and examines the significance of the work of Isobel Gallaud more than 100 years ago that first established the existence of distinct structural classes (Arum-type and Paris-type) within arbuscular mycorrhizal (AM) symbioses. We add new information from recent publications to the previous data last collated 10 years ago to consider whether any patterns have emerged on the basis of different fungal morphology within plant species or families. We discuss: (1) possible control exerted by the fungus over AM morphology; (2) apparent lack of plant phylogenetic relationships between the classes; (3) functions of the interfaces in different structural classes in relation to nutrient transfer in particular; and (4) the occurrence of plants with both of the major classes, and with intermediate AM structures, in different plant habitats. We also give suggestions for future research to help remove uncertainties about the functional and ecological significance of differences in AM morphology. Lastly, we urge retention of the terms Arum- and Paris-type, which are now well recognised by those who study AM symbioses. Electronic supplementary material The online version of this article (doi:10.1007/s00572-007-0130-9) contains supplementary material, which is available to authorized users.S. Dickson, F. A. Smith and S. E. Smit