20 research outputs found
Evidence that urocortin is absent from neurons of the Edinger-Westphal nucleus in pigeons
The Circadian Response of Intrinsically Photosensitive Retinal Ganglion Cells
Intrinsically photosensitive retinal ganglion cells (ipRGC) signal environmental
light level to the central circadian clock and contribute to the pupil light
reflex. It is unknown if ipRGC activity is subject to extrinsic (central) or
intrinsic (retinal) network-mediated circadian modulation during light
entrainment and phase shifting. Eleven younger persons (18–30 years) with
no ophthalmological, medical or sleep disorders participated. The activity of
the inner (ipRGC) and outer retina (cone photoreceptors) was assessed hourly
using the pupil light reflex during a 24 h period of constant environmental
illumination (10 lux). Exogenous circadian cues of activity, sleep, posture,
caffeine, ambient temperature, caloric intake and ambient illumination were
controlled. Dim-light melatonin onset (DLMO) was determined from salivary
melatonin assay at hourly intervals, and participant melatonin onset values were
set to 14 h to adjust clock time to circadian time. Here we demonstrate in
humans that the ipRGC controlled post-illumination pupil response has a
circadian rhythm independent of external light cues. This circadian variation
precedes melatonin onset and the minimum ipRGC driven pupil response occurs post
melatonin onset. Outer retinal photoreceptor contributions to the inner retinal
ipRGC driven post-illumination pupil response also show circadian variation
whereas direct outer retinal cone inputs to the pupil light reflex do not,
indicating that intrinsically photosensitive (melanopsin) retinal ganglion cells
mediate this circadian variation
Diversity of Color Vision: Not All Australian Marsupials Are Trichromatic
Color vision in marsupials has recently emerged as a particularly interesting case among mammals. It appears that there are both dichromats and trichromats among closely related species. In contrast to primates, marsupials seem to have evolved a different type of trichromacy that is not linked to the X-chromosome. Based on microspectrophotometry and retinal whole-mount immunohistochemistry, four trichromatic marsupial species have been described: quokka, quenda, honey possum, and fat-tailed dunnart. It has, however, been impossible to identify the photopigment of the third cone type, and genetically, all evidence so far suggests that all marsupials are dichromatic. The tammar wallaby is the only Australian marsupial to date for which there is no evidence of a third cone type. To clarify whether the wallaby is indeed a dichromat or trichromatic like other Australian marsupials, we analyzed the number of cone types in the “dichromatic” wallaby and the “trichromatic” dunnart. Employing identical immunohistochemical protocols, we confirmed that the wallaby has only two cone types, whereas 20–25% of cones remained unlabeled by S- and LM-opsin antibodies in the dunnart retina. In addition, we found no evidence to support the hypothesis that the rod photopigment (rod opsin) is expressed in cones which would have explained the absence of a third cone opsin gene. Our study is the first comprehensive and quantitative account of color vision in Australian marsupials where we now know that an unexpected diversity of different color vision systems appears to have evolved
