51 research outputs found

    Traits associated with innate and adaptive immunity in pigs: heritability and associations with performance under different health status conditions

    Get PDF
    There is a need for genetic markers or biomarkers that can predict resistance towards a wide range of infectious diseases, especially within a health environment typical of commercial farms. Such markers also need to be heritable under these conditions and ideally correlate with commercial performance traits. In this study, we estimated the heritabilities of a wide range of immune traits, as potential biomarkers, and measured their relationship with performance within both specific pathogen-free (SPF) and non-SPF environments. Immune traits were measured in 674 SPF pigs and 606 non-SPF pigs, which were subsets of the populations for which we had performance measurements (average daily gain), viz. 1549 SPF pigs and 1093 non-SPF pigs. Immune traits measured included total and differential white blood cell counts, peripheral blood mononuclear leucocyte (PBML) subsets (CD4+ cells, total CD8α+ cells, classical CD8αβ+ cells, CD11R1+ cells (CD8α+ and CD8α-), B cells, monocytes and CD16+ cells) and acute phase proteins (alpha-1 acid glycoprotein (AGP), haptoglobin, C-reactive protein (CRP) and transthyretin). Nearly all traits tested were heritable regardless of health status, although the heritability estimate for average daily gain was lower under non-SPF conditions. There were also negative genetic correlations between performance and the following immune traits: CD11R1+ cells, monocytes and the acute phase protein AGP. The strength of the association between performance and AGP was not affected by health status. However, negative genetic correlations were only apparent between performance and monocytes under SPF conditions and between performance and CD11R1+ cells under non-SPF conditions. Although we cannot infer causality in these relationships, these results suggest a role for using some immune traits, particularly CD11R1+ cells or AGP concentrations, as predictors of pig performance under the lower health status conditions associated with commercial farms

    Spatial patterns of microbial diversity and activity in an aged creosote-contaminated site

    Get PDF
    Restoration of polluted sites via in situ bioremediation relies heavily on the indigenous microbes and their activities. Spatial heterogeneity of microbial populations, contaminants and soil chemical parameters on such sites is a major hurdle in optimizing and implementing an appropriate bioremediation regime. We performed a grid-based sampling of an aged creosote-contaminated site followed by geostatistical modelling to illustrate the spatial patterns of microbial diversity and activity and to relate these patterns to the distribution of pollutants. Spatial distribution of bacterial groups unveiled patterns of niche differentiation regulated by patchy distribution of pollutants and an east-to-west pH gradient at the studied site. Proteobacteria clearly dominated in the hot spots of creosote pollution, whereas the abundance of Actinobacteria, TM7 and Planctomycetes was considerably reduced from the hot spots. The pH preferences of proteobacterial groups dominating in pollution could be recognized by examining the order and family-level responses. Acidobacterial classes came across as generalists in hydrocarbon pollution whose spatial distribution seemed to be regulated solely by the pH gradient. Although the community evenness decreased in the heavily polluted zones, basal respiration and fluorescein diacetate hydrolysis rates were higher, indicating the adaptation of specific indigenous microbial populations to hydrocarbon pollution. Combining the information from the kriged maps of microbial and soil chemistry data provided a comprehensive understanding of the long-term impacts of creosote pollution on the subsurface microbial communities. This study also highlighted the prospect of interpreting taxa-specific spatial patterns and applying them as indicators or proxies for monitoring polluted sites

    Lipid metabolic perturbation is an early-onset phenotype in adult spinster mutants: a Drosophila model for lysosomal storage disorders

    Get PDF
    Intracellular accumulation of lipids and swollen dysfunctional lysosomes are linked to several neurodegenerative diseases, including lysosomal storage disorders (LSD). Detailed characterization of lipid metabolic changes in relation to the onset and progression of neurodegeneration is currently missing. We systematically analyzed lipid perturbations in spinster (spin) mutants, a Drosophila model of LSD-like neurodegeneration. Our results highlight an imbalance in brain ceramide and sphingosine in the early stages of neurodegeneration, preceding the accumulation of endomembranous structures, manifestation of altered behavior, and buildup of lipofuscin. Manipulating levels of ceramidase and altering these lipids in spin mutants allowed us to conclude that ceramide homeostasis is the driving force in disease progression and is integral to spin function in the adult nervous system. We identified 29 novel physical interaction partners of Spin and focused on the lipid carrier protein, Lipophorin (Lpp). A subset of Lpp and Spin colocalize in the brain and within organs specialized for lipid metabolism (fat bodies and oenocytes). Reduced Lpp protein was observed in spin mutant tissues. Finally, increased levels of lipid metabolites produced by oenocytes in spin mutants allude to a functional interaction between Spin and Lpp, underscoring the systemic nature of lipid perturbation in LSD

    Modular Architecture and Unique Teichoic Acid Recognition Features of Choline-Binding Protein L (CbpL) Contributing to Pneumococcal Pathogenesis

    Get PDF
    The human pathogen Streptococcus pneumoniae is decorated with a special class of surface-proteins known as choline-binding proteins (CBPs) attached to phosphorylcholine (PCho) moieties from cell-wall teichoic acids. By a combination of X-ray crystallography, NMR, molecular dynamics techniques and in vivo virulence and phagocytosis studies, we provide structural information of choline-binding protein L (CbpL) and demonstrate its impact on pneumococcal pathogenesis and immune evasion. CbpL is a very elongated three-module protein composed of (i) an Excalibur Ca 2+ -binding domain -reported in this work for the very first time-, (ii) an unprecedented anchorage module showing alternate disposition of canonical and non-canonical choline-binding sites that allows vine-like binding of fully-PCho-substituted teichoic acids (with two choline moieties per unit), and (iii) a Ltp-Lipoprotein domain. Our structural and infection assays indicate an important role of the whole multimodular protein allowing both to locate CbpL at specific places on the cell wall and to interact with host components in order to facilitate pneumococcal lung infection and transmigration from nasopharynx to the lungs and blood. CbpL implication in both resistance against killing by phagocytes and pneumococcal pathogenesis further postulate this surface-protein as relevant among the pathogenic arsenal of the pneumococcus.We gratefully acknowledge Karsta Barnekow and Kristine Sievert-Giermann, for technical assistance and Lothar Petruschka for in silico analysis (all Dept. of Genetics, University of Greifswald). We are further grateful to the staff from SLS synchrotron beamline for help in data collection. This work was supported by grants from the Deutsche Forschungsgemeinschaft DFG GRK 1870 (to SH) and the Spanish Ministry of Economy and Competitiveness (BFU2014-59389-P to JAH, CTQ2014-52633-P to MB and SAF2012-39760-C02-02 to FG) and S2010/BMD- 2457 (Community of Madrid to JAH and FG).Peer Reviewe

    Sunlight-Exposed Biofilm Microbial Communities Are Naturally Resistant to Chernobyl Ionizing-Radiation Levels

    Get PDF
    BACKGROUND: The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta) and ascomycete fungi (Ascomycota) dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU) present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. CONCLUSIONS/SIGNIFICANCE: Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in terms of general diversity patterns, despite increased mutation levels at the single-OTU level. Therefore, biofilm communities growing in sunlight exposed substrates are capable of coping with increased mutation rates and appear pre-adapted to levels of ionizing radiation in Chernobyl due to their natural adaptation to periodical desiccation and ambient UV radiation

    Sometimes Sperm Whales (Physeter macrocephalus) Cannot Find Their Way Back to the High Seas: A Multidisciplinary Study on a Mass Stranding

    Get PDF
    BACKGROUND: Mass strandings of sperm whales (Physeter macrocephalus) remain peculiar and rather unexplained events, which rarely occur in the Mediterranean Sea. Solar cycles and related changes in the geomagnetic field, variations in water temperature and weather conditions, coast geographical features and human activities have been proposed as possible causes. In December 2009, a pod of seven male sperm whales stranded along the Adriatic coast of Southern Italy. This is the sixth instance from 1555 in this basin. METHODOLOGY/PRINCIPAL FINDINGS: Complete necropsies were performed on three whales whose bodies were in good condition, carrying out on sampled tissues histopathology, virology, bacteriology, parasitology, and screening of veins looking for gas emboli. Furthermore, samples for age determination, genetic studies, gastric content evaluation, stable isotopes and toxicology were taken from all the seven specimens. The animals were part of the same group and determined by genetic and photo-identification to be part of the Mediterranean population. Causes of death did not include biological agents, or the "gas and fat embolic syndrome", associated with direct sonar exposure. Environmental pollutant tissue concentrations were relatively high, in particular organochlorinated xenobiotics. Gastric content and morphologic tissue examinations showed a prolonged starvation, which likely caused, at its turn, the mobilization of lipophilic contaminants from the adipose tissue. Chemical compounds subsequently entered the blood circulation and may have impaired immune and nervous functions. CONCLUSIONS/SIGNIFICANCE: A multi-factorial cause underlying this sperm whales' mass stranding is proposed herein based upon the results of postmortem investigations as well as of the detailed analyses of the geographical and historical background. The seven sperm whales took the same "wrong way" into the Adriatic Sea, a potentially dangerous trap for Mediterranean sperm whales. Seismic surveys should be also regarded as potential co-factors, even if no evidence of direct impact has been detected

    First Study of Different Insect Cells to Triatoma Virus Infection

    No full text
    The use of viruses for biological control is a new option to be considered. The family Dicistroviridae, which affects only invertebrates, is one of the families that have been proposed for this purpose. The Triatoma virus (TrV), a member of this family, affects triatomine transmitters of Chagas disease, which is endemic in Latin America but also expanding its worldwide distribution. To this end, we attempted virus replication in Diptera, Aedes albopictus (clone C6/36) and Lepidoptera Spodoptera frugiperda (SF9, SF21) and High Five (H5) cell lines. The methodologies used were transfection process, direct inoculation (purified virus), and inoculation of purified virus with trypsin. Results were confirmed by SDS-PAGE, Western blotting, RT-PCR, electron microscopy, and immunofluorescence. According to the results obtained, further analysis of susceptibility/infection of H5 cells to TrV required to be studied.Centro de Estudios Parasitológicos y de VectoresFacultad de Ciencias Veterinaria

    The major acute phase proteins of bovine milk in a commercial dairy herd

    Get PDF
    Background Milk acute phase proteins (APP) have been identified and show promise as biomarkers of mastitis. However analysis of their profile in dairy cows from a production herd is necessary in order to confirm their benefits in mastitis diagnosis. The profiles of milk haptoglobin (Hp), mammary associated serum amyloid A3 (M-SAA3) and C-reactive protein (CRP) were determined in 54 composite milk (milk from all functional quarters of a cow’s udder collected in a common receptacle) samples (CMS) from a commercial dairy farm. Milk Hp was also determined in individual quarter milk (milk from a single udder quarter) samples (QMS) (n = 149) of the cows. An ELISA was developed and validated for the determination of milk Hp while commercial kits were used for M-SAA3 and CRP assay respectively. Composite milk APP results were compared with cow factors including parity, stage of lactation, percentage protein and fat as well as somatic cell counts (SCC). Results Composite milk Hp ranged from <0.4–55 μg/ml with a median of 3.5 μg/ml; composite milk M-SAA3 ranged from <0.6–50 μg/ml and had a median of 1.2 μg/ml, while CRP ranged from <1.80–173 ng/ml and had a median of 24.6 ng/ml. Significant correlations were found between composite SCC and Hp (P-value <0.009) as well as parity and Hp (P < 0.009), but not between M-SAA3 and SCC, M-SAA3 and Hp, M-SAA3 and CRP or M-SAA3 and parity. Milk CRP was correlated with % fat (P = 0.002) and % protein (P = 0.001) of the milk samples. The lack of correlation of SCC with the M-SAA3 and CRP could result from these APP being more sensitive to intra-mammary infection than SCC. Quarter milk Hp had a range of <0.4–420 μg/ml with a median value of 3.6 μg/ml, with 92 % of samples below 20 μg/ml. Conclusion Baseline values of Hp, M-SAA3 and CRP were established in composite milk from cows with normal SCC on the dairy farm. Parity was recognized as a possible confounding factor when diagnosing mastitis using Hp. The value of the APP, Hp, M-SAA3 and CRP as substitutes or to complement SCC in indicating udder inflammation, was demonstrated
    • …
    corecore