157 research outputs found

    Response of bone turnover markers to raloxifene treatment in postmenopausal women with osteopenia.

    Get PDF
    Introduction: The change in bone turnover markers (BTM) in response to osteoporosis therapy can be assessed by a decrease beyond the least significant change (LSC) or below the mean of the reference interval (RI). We compared the performance of these two approaches in women treated with raloxifene. Methods: Fifty postmenopausal osteopenic women, (age 51-72y) were randomised to raloxifene or no treatment for 2 years. Blood samples were collected for the measurement of BTM. The LSC for each marker was calculated from the untreated women and the RI obtained from healthy premenopausal women (age 35-40y). Bone mineral density (BMD) was measured at the spine and hip. Results: There was a decrease in BTM in response to raloxifene treatment; percentage change at 12 weeks, CTX -39% (95% CI -48 to -28) and PINP -32% (95% CI -40 to -23) P<0.001. The proportion of women classified as responding to treatment using LSC at 12 weeks was: CTX 38%, PINP 52%, at 48 weeks CTX 60%, PINP 65%. For the RI approach; at 12 weeks CTX and PINP 38%, at 48 weeks CTX 40%, PINP 45%. There was a significant difference in the change in spine BMD in the raloxifene treated group compared to the no-treatment group at week 48; difference 0.031 g/cm2, (95% CI 0.016 to 0.046, P<0.001). Conclusions: The two approaches identified women that reached the target for treatment using BTM. Both LSC and RI criteria appear useful in identifying treatment response but the two approaches do not fully overlap and may be complementary

    Supine posture changes lung volumes and increases ventilation heterogeneity in cystic fibrosis

    Get PDF
    INTRODUCTION: Lung Clearance Index (LCI) is recognised as an early marker of cystic fibrosis (CF) lung disease. The effect of posture on LCI however is important when considering longitudinal measurements from infancy and when comparing LCI to imaging studies. METHODS: 35 children with CF and 28 healthy controls (HC) were assessed. Multiple breath washout (MBW) was performed both sitting and supine in triplicate and analysed for LCI, Scond, Sacin, and lung volumes. These values were also corrected for the Fowler dead-space to create 'alveolar' indices. RESULTS: From sitting to supine there was a significant increase in LCI and a significant decrease in FRC for both CF and HC (p<0.01). LCI, when adjusted to estimate 'alveolar' LCI (LCIalv), increased the magnitude of change with posture for both LCIalv and FRCalv in both groups, with a greater effect of change in lung volume in HC compared with children with CF. The % change in LCIalv for all subjects correlated significantly with lung volume % changes, most notably tidal volume/functional residual capacity (Vtalv/FRCalv (r = 0.54,p<0.001)). CONCLUSION: There is a significant increase in LCI from sitting to supine, which we believe to be in part due to changes in lung volume and also increasing ventilation heterogeneity related to posture. This may have implications in longitudinal measurements from infancy to older childhood and for studies comparing supine imaging methods to LCI

    Toxicity in mice expressing short hairpin RNAs gives new insight into RNAi

    Get PDF
    Short hairpin RNAs can provide stable gene silencing via RNA interference. Recent studies have shown toxicity in vivo that appears to be related to saturation of the endogenous microRNA pathway. Will these findings limit the therapeutic use of such hairpins

    Alternative initiation and splicing in dicer gene expression in human breast cells

    Get PDF
    INTRODUCTION: Dicer is a ribonuclease that mediates RNA interference both at the transcriptional and the post-transcriptional levels. Human dicer gene expression is regulated in different tissues. Dicer is responsible for the synthesis of microRNAs and short temporal (st)RNAs that regulate the expression of many genes. Thus, understanding the control of the expression of the dicer gene is essential for the appreciation of double-stranded (ds)RNA-mediated pathways of gene expression. Human dicer mRNA has many upstream open reading frames (uORFs) at the 5'-leader sequences (the nucleotide sequence between the 5'-end and the start codon of the major ORF), and we studied whether these elements at the 5'-leader sequences regulate the expression of the dicer gene. METHOD: We determined the 5'-leader sequences of the dicer mRNAs in human breast cells by 5'-RACE and S1-nuclease protection analysis. We have analyzed the functions of the 5'-leader variants by reporter gene expression in vitro and in vivo. RESULTS: We found that the dicer transcripts in human breast cells vary in the sequence of their 5'-leader sequences, and that alternative promoter selection along with alternative splicing of the 5'-terminal exons apparently generate these variations. The breast cell has at least two predominant forms of dicer mRNAs, one of which has an additional 110 nucleotides at the 5'-end. Sequence comparison revealed that the first 80 nucleotides of these mRNA isoforms are encoded by a new exon located approximately 16 kb upstream of the reported start site. There are 30 extra nucleotides added to the previously reported exon 1. The human breast cells studied predominantly express two 5'-leader variants of dicer mRNAs, one with the exons 2 and 3 (long form) and the other without them (short form). By reporter gene expression analysis we found that the exon 2 and 3 sequences at the 5'-leader sequences are greatly inhibitory for the translation of the mRNA into protein. CONCLUSION: Dicer gene expression in human breast cells is regulated by alternative promoter selection to alter the length and composition of the 5'-leader sequence of its mRNA. Furthermore, alternative splicing of its exon 2 and 3 sequences of their pre-mRNA creates a more translationally competent mRNA in these cells

    Suppression of adenine nucleotide translocase-2 by vector-based siRNA in human breast cancer cells induces apoptosis and inhibits tumor growth in vitro and in vivo

    Get PDF
    INTRODUCTION: Adenine nucleotide translocator (ANT) 2 is highly expressed in proliferative cells, and ANT2 induction in cancer cells is known to be directly associated with glycolytic metabolisms and carcinogenesis. In addition, ANT2 repression results in the growth arrest of human cells, implying that ANT2 is a candidate for cancer therapy based on molecular targeting. METHODS: We utilized an ANT2-specific RNA interference approach to inhibit ANT2 expression for evaluating its antitumor effect in vitro and in vivo. Specifically, to investigate the therapeutic potential of ANT2 repression, we used a DNA vector-based RNA interference approach by expressing shRNA to knockdown ANT2 in breast cancer cell lines overexpressing ANT2. RESULTS: ANT2 shRNA treatment in breast cancer cell line MDA-MB-231 repressed cell growth as well as proliferation. In addition, cell cycle arrest, ATP depletion and apoptotic cell death characterized by the potential disruption of mitochondrial membrane were observed from the ANT2 shRNA-treated breast cancer cells. Apoptotic breast cancer cells transfected with ANT2 shRNA also induced a cytotoxic bystander effect that generates necrotic cell death to the neighboring cells. The intracellular levels of TNFalpha and TNF-receptor I were increased in ANT2 shRNA transfected cells and the bystander effect was partly blocked by anti-TNFalpha antibody. Ultimately, ANT2 shRNA effectively inhibited tumor growth in vivo. CONCLUSION: These results suggest that vector-based ANT2 RNA interference could be an efficient molecular therapeutic method for breast cancer with high expression of ANT2.This work was supported in part by the grants from the Cancer Research Center, and the Korean Science & Engineering Foundation through the Tumor Immunity Medical Research Center at Seoul National University College of Medicine

    In silico modeling indicates the development of HIV-1 resistance to multiple shRNA gene therapy differs to standard antiretroviral therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene therapy has the potential to counter problems that still hamper standard HIV antiretroviral therapy, such as toxicity, patient adherence and the development of resistance. RNA interference can suppress HIV replication as a gene therapeutic via expressed short hairpin RNAs (shRNAs). It is now clear that multiple shRNAs will likely be required to suppress infection and prevent the emergence of resistant virus.</p> <p>Results</p> <p>We have developed the first biologically relevant stochastic model in which multiple shRNAs are introduced into CD34+ hematopoietic stem cells. This model has been used to track the production of gene-containing CD4+ T cells, the degree of HIV infection, and the development of HIV resistance in lymphoid tissue for 13 years. In this model, we found that at least four active shRNAs were required to suppress HIV infection/replication effectively and prevent the development of resistance. The inhibition of incoming virus was shown to be critical for effective treatment. The low potential for resistance development that we found is largely due to a pool of replicating wild-type HIV that is maintained in non-gene containing CD4+ T cells. This wild-type HIV effectively out-competes emerging viral strains, maintaining the viral <it>status quo</it>.</p> <p>Conclusions</p> <p>The presence of a group of cells that lack the gene therapeutic and is available for infection by wild-type virus appears to mitigate the development of resistance observed with systemic antiretroviral therapy.</p

    Bone turnover markers in sheep and goat: a review of the scientific literature

    Get PDF
    Bone turnover markers (BTMs) are product of bone cell activity and are generally divided in bone formation and bone resorption markers. The purpose of this review was to structure the available information on the use of BTMs in studies on small ruminants, especially for monitoring their variations related to diet, exercise, gestation and metabolic lactation state, circadian and seasonal variations, and also during skeletal growth. Pre-clinical and translational studies using BTMs with sheep and goats as animal models in orthopaedic research studies to help in the evaluation of the fracture healing process and osteoporosis research are also described in this review. The available information from the reviewed studies was systematically organized in order to highlight the most promising BTMs in small ruminant research, as well as provide a wide view of the use of sheep and goat as animal models in orthopaedic research, type of markers and commercial assay kits with cross-reactivity in sheep and goat, method of sample and storage of serum and urine for bone turnover markers determination and the usefulness and limitations of bone turnover markers in the different studies, therefore an effective tool for researchers that seek answers to different questions while using BTMs in small ruminants.José Arthur de A. Camassa acknowledges to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil, for his PhD scholarship 202248/2015-1.info:eu-repo/semantics/publishedVersio

    Sequencing of Pooled DNA Samples (Pool-Seq) Uncovers Complex Dynamics of Transposable Element Insertions in Drosophila melanogaster

    Get PDF
    Transposable elements (TEs) are mobile genetic elements that parasitize genomes by semi-autonomously increasing their own copy number within the host genome. While TEs are important for genome evolution, appropriate methods for performing unbiased genome-wide surveys of TE variation in natural populations have been lacking. Here, we describe a novel and cost-effective approach for estimating population frequencies of TE insertions using paired-end Illumina reads from a pooled population sample. Importantly, the method treats insertions present in and absent from the reference genome identically, allowing unbiased TE population frequency estimates. We apply this method to data from a natural Drosophila melanogaster population from Portugal. Consistent with previous reports, we show that low recombining genomic regions harbor more TE insertions and maintain insertions at higher frequencies than do high recombining regions. We conservatively estimate that there are almost twice as many “novel” TE insertion sites as sites known from the reference sequence in our population sample (6,824 novel versus 3,639 reference sites, with on average a 31-fold coverage per insertion site). Different families of transposable elements show large differences in their insertion densities and population frequencies. Our analyses suggest that the history of TE activity significantly contributes to this pattern, with recently active families segregating at lower frequencies than those active in the more distant past. Finally, using our high-resolution TE abundance measurements, we identified 13 candidate positively selected TE insertions based on their high population frequencies and on low Tajima's D values in their neighborhoods
    corecore