21 research outputs found

    Folic Acid and Protein Content in Maternal Diet and Postnatal High-Fat Feeding Affect the Tissue Levels of Iron, Zinc, and Copper in the Rat

    Get PDF
    Although maternal, fetal, and placental mechanisms compensate for disturbances in the fetal environment, any nutritional inadequacies present during pregnancy may affect fetal metabolism, and their consequences may appear in later life. The aim of the present study is to investigate the influence of maternal diet during gestation on Fe, Zn, and Cu levels in the livers and kidneys of adult rats. The study was carried out on the offspring (n = 48) of mothers fed either a protein-balanced or a protein-restricted diet (18% vs. 9% casein) during pregnancy, with or without folic acid supplementation (0.005- vs. 0.002-g folic acid/kg diet). At 10 weeks of age, the offspring of each maternal group were randomly assigned to groups fed either the AIN-93G diet or a high-fat diet for 6 weeks, until the end of the experiment. The levels of Fe, Zn, and Cu in the livers and kidneys were determined by the F-AAS method. It was found that postnatal exposure to the high-fat diet was associated with increased hepatic Fe levels (p < 0.001), and with decreased liver Zn and Cu contents (p < 0.01 and p < 0.05, respectively), as well as with decreased renal Cu contents (p < 0.001). Moreover, the offspring’s tissue mineral levels were also affected by protein and folic acid content in the maternal diet. Both prenatal protein restriction and folic acid supplementation increased the liver Zn content (p < 0.05) and the kidney Zn content (p < 0.001; p < 0.05, respectively), while folic acid supplementation resulted in a reduction in renal Cu level (p < 0.05). Summarizing, the results of this study show that maternal dietary folic acid and protein intake during pregnancy, as well as the type of postweaning diet, affect Fe, Zn, and Cu levels in the offspring of the rat. However, the mechanisms responsible for this phenomenon are unclear, and warrant further investigation

    FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure

    Get PDF
    Environmental factors such as nutritional state may act on the epigenome that consequently contributes to the metabolic adaptation of cells and the organisms. The lysine-specific demethylase-1 (LSD1) is a unique nuclear protein that utilizes flavin adenosine dinucleotide (FAD) as a cofactor. Here we show that LSD1 epigenetically regulates energy-expenditure genes in adipocytes depending on the cellular FAD availability. We find that the loss of LSD1 function, either by short interfering RNA or by selective inhibitors in adipocytes, induces a number of regulators of energy expenditure and mitochondrial metabolism such as PPARγ coactivator-1α resulting in the activation of mitochondrial respiration. In the adipose tissues from mice on a high-fat diet, expression of LSD1-target genes is reduced, compared with that in tissues from mice on a normal diet, which can be reverted by suppressing LSD1 function. Our data suggest a novel mechanism where LSD1 regulates cellular energy balance through coupling with cellular FAD biosynthesis

    Folic Acid Transport to the Human Fetus Is Decreased in Pregnancies with Chronic Alcohol Exposure

    Get PDF
    During pregnancy, the demand for folic acid increases since the fetus requires this nutrient for its rapid growth and cell proliferation. The placenta concentrates folic acid into the fetal circulation; as a result the fetal levels are 2 to 4 times higher than the maternal level. Animal and in vitro studies have suggested that alcohol may impair transport of folic acid across the placenta by decreasing expression of transport proteins. We aim to determine if folate transfer to the fetus is altered in human pregnancies with chronic alcohol consumption.Serum folate was measured in maternal blood and umbilical cord blood at the time of delivery in pregnancies with chronic and heavy alcohol exposure (n = 23) and in non-drinking controls (n = 24). In the alcohol-exposed pairs, the fetal:maternal serum folate ratio was ≤ 1.0 in over half (n = 14), whereas all but one of the controls were >1.0. Mean folate in cord samples was lower in the alcohol-exposed group than in the controls (33.15 ± 19.89 vs 45.91 ± 20.73, p = 0.04).Our results demonstrate that chronic and heavy alcohol use in pregnancy impairs folate transport to the fetus. Altered folate concentrations within the placenta and in the fetus may in part contribute to the deficits observed in the fetal alcohol spectrum disorders

    Modeling risk factors and confounding effects in stroke

    Get PDF

    From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition?

    Get PDF
    corecore