87 research outputs found

    Clinical Significance of Thrombosis in an Intracardiac Blind Pouch After a Fontan Operation

    Get PDF
    The univentricular heart after the Fontan operation may have a blind pouch formed by the pulmonary stump or rudimentary ventricle according to the anatomy before surgery. Thrombosis in an intracardiac blind pouch of patients with a univentricular heart is a hazardous complication. Because only a few reports have described this complication, the authors evaluated the clinical significance of thrombosis in an intracardiac blind pouch of a univentricular heart. They performed a retrospective review of medical records from August 1986 to December 2007. Four patients were confirmed as having thrombosis in a pulmonary artery stump and one patient as having thrombosis in a rudimentary ventricle shown by cardiac computed tomography (CT). This represents 1.85% (5/271) of patients with ongoing regular follow-up evaluation after the Fontan operation. The median age at diagnosis was 14.2 years. Two of the five patients were taking aspirin and one patient was taking warfarin when they were identified for the development of thrombosis. None of the patients demonstrated thrombosis in the Fontan tract or venous side of the circulation. Brain magnetic resonance imaging (MRI) showed that three patients had cerebral infarction and one patient had suggestive old ischemia. Three patients with thrombus in the pulmonary stump underwent pulmonary artery stump thrombectomy and pulmonary valve obliteration. One patient with thrombus in the rudimentary ventricle underwent ventricular septal defect (VSD) closure with thrombectomy. Thrombus in a blind pouch could cause systemic thromboembolism despite little blood communication. Therefore, surgical modification of the pulmonary stump and VSD closure of the rudimentary ventricle are required to reduce the risk of later thrombus formation. Clinicians should not overlook the possibility of thrombus in a ligated pulmonary artery stump or a rudimentary ventricle after the Fontan operation, which may increase the risk of embolic stroke for patients with single-ventricle physiology

    Mice have a transcribed L-threonine aldolase/GLY1 gene, but the human GLY1 gene is a non-processed pseudogene

    Get PDF
    BACKGROUND: There are three pathways of L-threonine catabolism. The enzyme L-threonine aldolase (TA) has been shown to catalyse the conversion of L-threonine to yield glycine and acetaldehyde in bacteria, fungi and plants. Low levels of TA enzymatic activity have been found in vertebrates. It has been suggested that any detectable activity is due to serine hydroxymethyltransferase and that mammals lack a genuine threonine aldolase. RESULTS: The 7-exon murine L-threonine aldolase gene (GLY1) is located on chromosome 11, spanning 5.6 kb. The cDNA encodes a 400-residue protein. The protein has 81% similarity with the bacterium Thermotoga maritima TA. Almost all known functional residues are conserved between the two proteins including Lys242 that forms a Schiff-base with the cofactor, pyridoxal-5'-phosphate. The human TA gene is located at 17q25. It contains two single nucleotide deletions, in exons 4 and 7, which cause frame-shifts and a premature in-frame stop codon towards the carboxy-terminal. Expression of human TA mRNA was undetectable by RT-PCR. In mice, TA mRNA was found at low levels in a range of adult tissues, being highest in prostate, heart and liver. In contrast, serine/threonine dehydratase, another enzyme that catabolises L-threonine, is expressed very highly only in the liver. Serine dehydratase-like 1, also was most abundant in the liver. In whole mouse embryos TA mRNA expression was low prior to E-15 increasing more than four-fold by E-17. CONCLUSION: Mice, the western-clawed frog and the zebrafish have transcribed threonine aldolase/GLY1 genes, but the human homolog is a non-transcribed pseudogene. Serine dehydratase-like 1 is a putative L-threonine catabolising enzyme

    Genome-wide association reveals genetic effects on human Aβ<sub>42 </sub>and τ protein levels in cerebrospinal fluids: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alzheimer's disease (AD) is common and highly heritable with many genes and gene variants associated with AD in one or more studies, including APOE ε2/ε3/ε4. However, the genetic backgrounds for normal cognition, mild cognitive impairment (MCI) and AD in terms of changes in cerebrospinal fluid (CSF) levels of Aβ<sub>1-42</sub>, T-tau, and P-tau<sub>181P</sub>, have not been clearly delineated. We carried out a genome-wide association study (GWAS) in order to better define the genetic backgrounds to these three states in relation to CSF levels.</p> <p>Methods</p> <p>Subjects were participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI). The GWAS dataset consisted of 818 participants (mainly Caucasian) genotyped using the Illumina Human Genome 610 Quad BeadChips. This sample included 410 subjects (119 Normal, 115 MCI and 176 AD) with measurements of CSF Aβ<sub>1-42</sub>, T-tau, and P-tau<sub>181P </sub>Levels. We used PLINK to find genetic associations with the three CSF biomarker levels. Association of each of the 498,205 SNPs was tested using additive, dominant, and general association models while considering APOE genotype and age. Finally, an effort was made to better identify relevant biochemical pathways for associated genes using the ALIGATOR software.</p> <p>Results</p> <p>We found that there were some associations with APOE genotype although CSF levels were about the same for each subject group; CSF Aβ<sub>1-42 </sub>levels decreased with APOE gene dose for each subject group. T-tau levels tended to be higher among AD cases than among normal subjects. From adjusted result using APOE genotype and age as covariates, no SNP was associated with CSF levels among AD subjects. <it>CYP19A1 </it>'aromatase' (rs2899472), <it>NCAM2</it>, and multiple SNPs located on chromosome 10 near the <it>ARL5B </it>gene demonstrated the strongest associations with Aβ<sub>1-42 </sub>in normal subjects. Two genes found to be near the top SNPs, <it>CYP19A1 </it>(rs2899472, p = 1.90 × 10<sup>-7</sup>) and <it>NCAM2 </it>(rs1022442, p = 2.75 × 10<sup>-7</sup>) have been reported as genetic factors related to the progression of AD from previous studies. In AD subjects, APOE ε2/ε3 and ε2/ε4 genotypes were associated with elevated T-tau levels and ε4/ε4 genotype was associated with elevated T-tau and P-tau<sub>181P </sub>levels. Pathway analysis detected several biological pathways implicated in Normal with CSF β-amyloid peptide (Aβ<sub>1-42</sub>).</p> <p>Conclusions</p> <p>Our genome-wide association analysis identified several SNPs as important factors for CSF biomarker. We also provide new evidence for additional candidate genetic risk factors from pathway analysis that can be tested in further studies.</p

    A Distinct Urinary Biomarker Pattern Characteristic of Female Fabry Patients That Mirrors Response to Enzyme Replacement Therapy

    Get PDF
    Female patients affected by Fabry disease, an X-linked lysosomal storage disorder, exhibit a wide spectrum of symptoms, which renders diagnosis, and treatment decisions challenging. No diagnostic test, other than sequencing of the alpha-galactosidase A gene, is available and no biomarker has been proven useful to screen for the disease, predict disease course and monitor response to enzyme replacement therapy. Here, we used urine proteomic analysis based on capillary electrophoresis coupled to mass spectrometry and identified a biomarker profile in adult female Fabry patients. Urine samples were taken from 35 treatment-naive female Fabry patients and were compared to 89 age-matched healthy controls. We found a diagnostic biomarker pattern that exhibited 88.2% sensitivity and 97.8% specificity when tested in an independent validation cohort consisting of 17 treatment-naive Fabry patients and 45 controls. The model remained highly specific when applied to additional control patients with a variety of other renal, metabolic and cardiovascular diseases. Several of the 64 identified diagnostic biomarkers showed correlations with measures of disease severity. Notably, most biomarkers responded to enzyme replacement therapy, and 8 of 11 treated patients scored negative for Fabry disease in the diagnostic model. In conclusion, we defined a urinary biomarker model that seems to be of diagnostic use for Fabry disease in female patients and may be used to monitor response to enzyme replacement therapy

    A Glycoprotein in Shells of Conspecifics Induces Larval Settlement of the Pacific Oyster Crassostrea gigas

    Get PDF
    Settlement of larvae of Crassostrea gigas on shell chips (SC) prepared from shells of 11 different species of mollusks was investigated. Furthermore, the settlement inducing compound in the shell of C. gigas was extracted and subjected to various treatments to characterize the chemical cue. C. gigas larvae settled on SC of all species tested except on Patinopecten yessoensis and Atrina pinnata. In SC of species that induced C. gigas larvae to settle, settlement was proportionate to the amount of SC supplied to the larvae. When compared to C. gigas SC, all species except Crassostrea nippona showed lower settlement inducing activities, suggesting that the cue may be more abundant or in a more available form to the larvae in shells of conspecific and C. nippona than in other species. The settlement inducing activity of C. gigas SC remained intact after antibiotic treatment. Extraction of C. gigas SC with diethyl ether (Et2O-ex), ethanol (EtOH-ex), and water (Aq-ex) did not induce larval settlement of C. gigas larvae. However, extraction of C. gigas SC with 2N of hydrochloric acid (HCl-ex) induced larval settlement that was at the same level as the SC. The settlement inducing compound in the HCl-ex was stable at 100°C but was destroyed or degraded after pepsin, trypsin, PNGase F and trifluoromethanesulfonic acid treatments. This chemical cue eluted between the molecular mass range of 45 and 150 kDa after gel filtration and revealed a major band at 55 kDa on the SDS-PAGE gel after staining with Stains-all. Thus, a 55 kDa glycoprotein component in the organic matrix of C. gigas shells is hypothesized to be the chemical basis of larval settlement on conspecifics

    Transgenesis in Animal Agriculture: Addressing Animal Health and Welfare Concerns

    Get PDF
    The US Food and Drug Administration’s final Guidance for Industry on the regulation of transgenesis in animal agriculture has paved the way for the commercialization of genetically engineered (GE) farm animals. The production-related diseases associated with extant breeding technologies are reviewed, as well as the predictable welfare consequences of continued emphasis on prolificacy at the potential expense of physical fitness. Areas in which biotechnology could be used to improve the welfare of animals while maintaining profitability are explored along with regulatory schema to improve agency integration in GE animal oversight
    corecore