51 research outputs found

    Atomically dispersed Pt-N-4 sites as efficient and selective electrocatalysts for the chlorine evolution reaction

    Get PDF
    Chlorine evolution reaction (CER) is a critical anode reaction in chlor-alkali electrolysis. Although precious metal-based mixed metal oxides (MMOs) have been widely used as CER catalysts, they suffer from the concomitant generation of oxygen during the CER. Herein, we demonstrate that atomically dispersed Pt-N-4 sites doped on a carbon nanotube (Pt-1/CNT) can catalyse the CER with excellent activity and selectivity. The Pt-1/CNT catalyst shows superior CER activity to a Pt nanoparticle-based catalyst and a commercial Ru/Ir-based MMO catalyst. Notably, Pt-1/CNT exhibits near 100% CER selectivity even in acidic media, with low Cl- concentrations (0.1M), as well as in neutral media, whereas the MMO catalyst shows substantially lower CER selectivity. In situ electrochemical X-ray absorption spectroscopy reveals the direct adsorption of Cl- on Pt-N-4 sites during the CER. Density functional theory calculations suggest the PtN4C12 site as the most plausible active site structure for the CER

    Potential toxic elements in stream sediments, soils and waters in an abandoned radium mine (central Portugal)

    Get PDF
    The Alto da Vårzea radium mine (AV) exploited ore and U-bearing minerals, such as autunite and torbernite. The mine was exploited underground from 1911 to 1922, closed in 1946 without restoration, and actually a commercial area is deployed. Stream sediments, soils and water samples were collected between 2008 and 2009. Stream sediments are mainly contaminated in As, Th, U and W, which is related to the AV radium mine. The PTEs, As, Co, Cr, Sr, Th, U, W, Zn, and electrical conductivity reached the highest values in soils collected inside the mine influence. Soils are contaminated with As and U and must not be used for any purpose. Most waters have pH values ranging from 4.3 to 6.8 and are poorly mineralized (EC = 41-186 ”S/cm; TDS = 33-172 mg/L). Groundwater contains the highest Cu, Cr and Pb contents. Arsenic occurs predominantly as H2(AsO4)- and H(AsO4)2-. Waters are saturated in goethite, haematite and some of them also in lepidocrocite and ferrihydrite, which adsorbs As (V). Lead is divalent in waters collected during the warm season, being mobile in these waters. Thorium occurs mainly as Th(OH)3(CO3)-, Th(OH)2(CO3) and Th(OH)2(CO3) 22- , which increase water Th contents. Uranium occurs predominantly as UO2CO3, but CaUO2(CO3) 32- and CaUO2(CO3)3 also occur, decreasing its mobility in water. The waters are contaminated in NO2-, Mn, Cu, As, Pb and U and must not be used for human consumption and in agricultural activities. The water contamination is mainly associated with the old radium mine and human activities. A restoration of the mining area with PTE monitoring is necessary to avoid a public hazard.Thanks are due to Prof. Joao Coutinho for the determination of organic matter and cation exchange capacity in samples of stream sediments and soils and A. Rodrigues for the water analyses, EDM for some information on the Alto da Varzea mine area. This study had the support of Portuguese Fundacao para a Ciencia e Tecnologia (FCT), through the strategic projects UID/GEO/04035/2013 and UID/MAR/04292/2013 (MARE).info:eu-repo/semantics/publishedVersio

    Network as transconcept: elements for a conceptual demarcation in the field of public health

    Get PDF
    ABSTRACT The main proposal to set up an articulated mode of operation of health services has been the concept of network, which has been appropriated in different ways in the field of public health, as it is used in other disciplinary fields or even taking it from common sense. Amid the diversity of uses and concepts, we recognize the need for rigorous conceptual demarcation about networks in the field of health. Such concern aims to preserve the strategic potential of this concept in the research and planning in the field, overcoming uncertainties and distortions still observed in its discourse-analytic circulation in public health. To this end, we will introduce the current uses of network in different disciplinary fields, emphasizing dialogues with the field of public health. With this, we intend to stimulate discussions about the development of empirical dimensions and analytical models that may allow us to understand the processes produced within and around health networks
    • 

    corecore