45 research outputs found

    ENGOT-ov-6/TRINOVA-2: Randomised, double-blind, phase 3 study of pegylated liposomal doxorubicin plus trebananib or placebo in women with recurrent partially platinum-sensitive or resistant ovarian cancer

    Get PDF
    Aims: Trebananib, a peptide-Fc fusion protein, inhibits angiogenesis by inhibiting binding of angiopoietin-1/2 to the receptor tyrosine kinase Tie2. This randomised, double-blind, placebo-controlled phase 3 study evaluated whether trebananib plus pegylated liposomal doxorubicin (PLD) improved progression-free survival (PFS) in patients with recurrent epithelial ovarian cancer. / Methods: Women with recurrent ovarian cancer (platinum-free interval ≤12 months) were randomised to intravenous PLD 50 mg/m2 once every 4 weeks plus weekly intravenous trebananib 15 mg/kg or placebo. PFS was the primary end-point; key secondary end-points were objective response rate (ORR) and duration of response (DOR). Owing to PLD shortages, enrolment was paused for 13 months; the study was subsequently truncated. / Results: Two hundred twenty-three patients were enrolled. Median PFS was 7.6 months (95% CI, 7.2–9.0) in the trebananib arm and 7.2 months (95% CI, 4.8–8.2) in the placebo arm, with a hazard ratio of 0.92 (95% CI, 0.68–1.24). However, because the proportional hazards assumption was not fulfilled, the standard Cox model did not provide a reliable estimate of the hazard ratio. ORR in the trebananib arm was 46% versus 21% in the placebo arm (odds ratio, 3.43; 95% CI, 1.78–6.64). Median DOR was improved (trebananib, 7.4 months [95% CI, 5.7–7.6]; placebo, 3.9 months [95% CI, 2.3–6.5]). Adverse events with a greater incidence in the trebananib arm included localised oedema (61% versus 32%), ascites (29% versus 9%) and vomiting (45% versus 33%). / Conclusions: Trebananib demonstrated anticancer activity in this phase 3 study, indicated by improved ORR and DOR. Median PFS was not improved. No new safety signals were identified. / Trial registration: ClinicalTrials.gov, NCT0128125

    Improved Detection of Rare Genetic Variants for Diseases

    Get PDF
    Technology advances have promoted gene-based sequencing studies with the aim of identifying rare mutations responsible for complex diseases. A complication in these types of association studies is that the vast majority of non-synonymous mutations are believed to be neutral to phenotypes. It is thus critical to distinguish potential causative variants from neutral variation before performing association tests. In this study, we used existing predicting algorithms to predict functional amino acid substitutions, and incorporated that information into association tests. Using simulations, we comprehensively studied the effects of several influential factors, including the sensitivity and specificity of functional variant predictions, number of variants, and proportion of causative variants, on the performance of association tests. Our results showed that incorporating information regarding functional variants obtained from existing prediction algorithms improves statistical power under certain conditions, particularly when the proportion of causative variants is moderate. The application of the proposed tests to a real sequencing study confirms our conclusions. Our work may help investigators who are planning to pursue gene-based sequencing studies

    A Simple Method for Analyzing Exome Sequencing Data Shows Distinct Levels of Nonsynonymous Variation for Human Immune and Nervous System Genes

    Get PDF
    To measure the strength of natural selection that acts upon single nucleotide variants (SNVs) in a set of human genes, we calculate the ratio between nonsynonymous SNVs (nsSNVs) per nonsynonymous site and synonymous SNVs (sSNVs) per synonymous site. We transform this ratio with a respective factor f that corrects for the bias of synonymous sites towards transitions in the genetic code and different mutation rates for transitions and transversions. This method approximates the relative density of nsSNVs (rdnsv) in comparison with the neutral expectation as inferred from the density of sSNVs. Using SNVs from a diploid genome and 200 exomes, we apply our method to immune system genes (ISGs), nervous system genes (NSGs), randomly sampled genes (RSGs), and gene ontology annotated genes. The estimate of rdnsv in an individual exome is around 20% for NSGs and 30–40% for ISGs and RSGs. This smaller rdnsv of NSGs indicates overall stronger purifying selection. To quantify the relative shift of nsSNVs towards rare variants, we next fit a linear regression model to the estimates of rdnsv over different SNV allele frequency bins. The obtained regression models show a negative slope for NSGs, ISGs and RSGs, supporting an influence of purifying selection on the frequency spectrum of segregating nsSNVs. The y-intercept of the model predicts rdnsv for an allele frequency close to 0. This parameter can be interpreted as the proportion of nonsynonymous sites where mutations are tolerated to segregate with an allele frequency notably greater than 0 in the population, given the performed normalization of the observed nsSNV to sSNV ratio. A smaller y-intercept is displayed by NSGs, indicating more nonsynonymous sites under strong negative selection. This predicts more monogenically inherited or de-novo mutation diseases that affect the nervous system

    Natural Selection Affects Multiple Aspects of Genetic Variation at Putatively Neutral Sites across the Human Genome

    Get PDF
    A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries of genetic variation, like allele frequencies, are also correlated with recombination rate and whether these correlations can be explained solely by negative selection against deleterious mutations or whether positive selection acting on favorable alleles is also required. Here we attempt to address these questions by analyzing three different genome-wide resequencing datasets from European individuals. We document several significant correlations between different genomic features. In particular, we find that average minor allele frequency and diversity are reduced in regions of low recombination and that human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations. However, models with strong positive selection on nonsynonymous mutations and little negative selection predict a stronger negative correlation between neutral diversity and nonsynonymous divergence than observed in the actual data, supporting the importance of negative, rather than positive, selection throughout the genome. Further, we show that the widespread presence of weakly deleterious alleles, rather than a small number of strongly positively selected mutations, is responsible for the correlation between neutral genetic diversity and recombination rate. This work suggests that natural selection has affected multiple aspects of linked neutral variation throughout the human genome and that positive selection is not required to explain these observations

    A global reference for human genetic variation

    Get PDF
    The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.We thank the many people who were generous with contributing their samples to the project: the African Caribbean in Barbados; Bengali in Bangladesh; British in England and Scotland; Chinese Dai in Xishuangbanna, China; Colombians in Medellin, Colombia; Esan in Nigeria; Finnish in Finland; Gambian in Western Division – Mandinka; Gujarati Indians in Houston, Texas, USA; Han Chinese in Beijing, China; Iberian populations in Spain; Indian Telugu in the UK; Japanese in Tokyo, Japan; Kinh in Ho Chi Minh City, Vietnam; Luhya in Webuye, Kenya; Mende in Sierra Leone; people with African ancestry in the southwest USA; people with Mexican ancestry in Los Angeles, California, USA; Peruvians in Lima, Peru; Puerto Ricans in Puerto Rico; Punjabi in Lahore, Pakistan; southern Han Chinese; Sri Lankan Tamil in the UK; Toscani in Italia; Utah residents (CEPH) with northern and western European ancestry; and Yoruba in Ibadan, Nigeria. Many thanks to the people who contributed to this project: P. Maul, T. Maul, and C. Foster; Z. Chong, X. Fan, W. Zhou, and T. Chen; N. Sengamalay, S. Ott, L. Sadzewicz, J. Liu, and L. Tallon; L. Merson; O. Folarin, D. Asogun, O. Ikpwonmosa, E. Philomena, G. Akpede, S. Okhobgenin, and O. Omoniwa; the staff of the Institute of Lassa Fever Research and Control (ILFRC), Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria; A. Schlattl and T. Zichner; S. Lewis, E. Appelbaum, and L. Fulton; A. Yurovsky and I. Padioleau; N. Kaelin and F. Laplace; E. Drury and H. Arbery; A. Naranjo, M. Victoria Parra, and C. Duque; S. Däkel, B. Lenz, and S. Schrinner; S. Bumpstead; and C. Fletcher-Hoppe. Funding for this work was from the Wellcome Trust Core Award 090532/Z/09/Z and Senior Investigator Award 095552/Z/11/Z (P.D.), and grants WT098051 (R.D.), WT095908 and WT109497 (P.F.), WT086084/Z/08/Z and WT100956/Z/13/Z (G.M.), WT097307 (W.K.), WT0855322/Z/08/Z (R.L.), WT090770/Z/09/Z (D.K.), the Wellcome Trust Major Overseas program in Vietnam grant 089276/Z.09/Z (S.D.), the Medical Research Council UK grant G0801823 (J.L.M.), the UK Biotechnology and Biological Sciences Research Council grants BB/I02593X/1 (G.M.) and BB/I021213/1 (A.R.L.), the British Heart Foundation (C.A.A.), the Monument Trust (J.H.), the European Molecular Biology Laboratory (P.F.), the European Research Council grant 617306 (J.L.M.), the Chinese 863 Program 2012AA02A201, the National Basic Research program of China 973 program no. 2011CB809201, 2011CB809202 and 2011CB809203, Natural Science Foundation of China 31161130357, the Shenzhen Municipal Government of China grant ZYC201105170397A (J.W.), the Canadian Institutes of Health Research Operating grant 136855 and Canada Research Chair (S.G.), Banting Postdoctoral Fellowship from the Canadian Institutes of Health Research (M.K.D.), a Le Fonds de Recherche duQuébec-Santé (FRQS) research fellowship (A.H.), Genome Quebec (P.A.), the Ontario Ministry of Research and Innovation – Ontario Institute for Cancer Research Investigator Award (P.A., J.S.), the Quebec Ministry of Economic Development, Innovation, and Exports grant PSR-SIIRI-195 (P.A.), the German Federal Ministry of Education and Research (BMBF) grants 0315428A and 01GS08201 (R.H.), the Max Planck Society (H.L., G.M., R.S.), BMBF-EPITREAT grant 0316190A (R.H., M.L.), the German Research Foundation (Deutsche Forschungsgemeinschaft) Emmy Noether Grant KO4037/1-1 (J.O.K.), the Beatriu de Pinos Program grants 2006 BP-A 10144 and 2009 BP-B 00274 (M.V.), the Spanish National Institute for Health Research grant PRB2 IPT13/0001-ISCIII-SGEFI/FEDER (A.O.), Ewha Womans University (C.L.), the Japan Society for the Promotion of Science Fellowship number PE13075 (N.P.), the Louis Jeantet Foundation (E.T.D.), the Marie Curie Actions Career Integration grant 303772 (C.A.), the Swiss National Science Foundation 31003A_130342 and NCCR “Frontiers in Genetics” (E.T.D.), the University of Geneva (E.T.D., T.L., G.M.), the US National Institutes of Health National Center for Biotechnology Information (S.S.) and grants U54HG3067 (E.S.L.), U54HG3273 and U01HG5211 (R.A.G.), U54HG3079 (R.K.W., E.R.M.), R01HG2898 (S.E.D.), R01HG2385 (E.E.E.), RC2HG5552 and U01HG6513 (G.T.M., G.R.A.), U01HG5214 (A.C.), U01HG5715 (C.D.B.), U01HG5718 (M.G.), U01HG5728 (Y.X.F.), U41HG7635 (R.K.W., E.E.E., P.H.S.), U41HG7497 (C.L., M.A.B., K.C., L.D., E.E.E., M.G., J.O.K., G.T.M., S.A.M., R.E.M., J.L.S., K.Y.), R01HG4960 and R01HG5701 (B.L.B.), R01HG5214 (G.A.), R01HG6855 (S.M.), R01HG7068 (R.E.M.), R01HG7644 (R.D.H.), DP2OD6514 (P.S.), DP5OD9154 (J.K.), R01CA166661 (S.E.D.), R01CA172652 (K.C.), P01GM99568 (S.R.B.), R01GM59290 (L.B.J., M.A.B.), R01GM104390 (L.B.J., M.Y.Y.), T32GM7790 (C.D.B., A.R.M.), P01GM99568 (S.R.B.), R01HL87699 and R01HL104608 (K.C.B.), T32HL94284 (J.L.R.F.), and contracts HHSN268201100040C (A.M.R.) and HHSN272201000025C (P.S.), Harvard Medical School Eleanor and Miles Shore Fellowship (K.L.), Lundbeck Foundation Grant R170-2014-1039 (K.L.), NIJ Grant 2014-DN-BX-K089 (Y.E.), the Mary Beryl Patch Turnbull Scholar Program (K.C.B.), NSF Graduate Research Fellowship DGE-1147470 (G.D.P.), the Simons Foundation SFARI award SF51 (M.W.), and a Sloan Foundation Fellowship (R.D.H.). E.E.E. is an investigator of the Howard Hughes Medical Institute

    Understanding rare and common diseases in the context of human evolution

    Full text link

    Fetal microchimerism persists at high levels in c-kit+ stem cells in sensitized mothers

    No full text
    We previously showed that fetal and maternal exposure to non-inherited maternal antigens (NIMA) during gestation and nursing resulted in lifelong tolerance to NIMA in some offspring. This NIMA-specific tolerance was mediated by regulatory T cells (Tregs) and was correlated with the level of multi-lineage maternal microchimerism (Mc) indicating a causative link between Mc and Treg development. To determine if transfer of fetal cells into mothers resulted in a similar tolerance to fetal cells, we used qPCR to detect rare fetal derived cells and a delayed type hypersensitivity (DTH) assay to detect fetal alloantigen-specific effector and regulatory T cells in mothers. We found that 5/8 B6 mothers of H2b/d offspring were sensitized to the alloantigens H2d and HY, indicating a dominance of alloantigen-specific effector T cells. Though these sensitized mothers did not have detectable fetal Mc (FMc) in any of the organs tested, they had very high levels of fetus-derived c-kit+ stem cells in their bone marrow. The remaining 3/8 B6 mothers that were not sensitized to the fetal antigens had detectable FMc found mostly in heart, lungs and liver, and in 2/3, we could detect alloantigen-specific regulatory T cells. This data indicates that, as in NIMA-specific tolerance, tolerance in multiparous females to inherited paternal antigens (IPA) expressed by the fetus is associated with the presence of fetal Mc in differentiated cell subsets. Surprisingly, robust lin−c-kit+ bone marrow cell fetal Mc can occur in sensitized mothers. This suggests a continuous source of allospecific priming, coupled with active elimination of mature IPA-expressing lin+ cells by effector T cells of the maternal host
    corecore