601 research outputs found

    Purification of therapeutic & prophylactic mRNA by affinity chromatography

    Get PDF
    In vitro transcribed mRNA is an emerging therapeutic and prophylactic modality with the potential to transform medicine. The drug platform features exceptionally rapid development and versatility of manufacturing processes. Despite the prompt advancement of mRNA from trials to market, purification challenges remain. The cell-free synthesis of mRNA is responsible for the generation of product and process-related impurities, creating the potential for immunogenic effects and decreased translatability into the clinic. Affinity chromatography presents itself as an effective primary capture step for the isolation of functional transcripts from product and some process related impurities. Developing platform processes for the affinity purification of mRNA is hindered by the varying strand lengths of non-amplifying, self-amplifying, and trans-amplifying constructs, with disparities in capacity being observed. Ligand chemistries may contribute to non-specific binding events which remain challenging to characterise. Improved elution and wash conditions may be pursued through novel ligand chemistries, enhanced density and spacing. Regardless of the size or application of the product, the impurities generated by in vitro transcription represent a significant obstacle to the safe administration and long-term storage of mRNA. Affinity chromatography is a valuable tool in overcoming these challenges, with current commercially available products relying heavily on oligo deoxythymidine ligand chemistries. Whilst affinity chromatography is highly valuable in the purification of mRNA, the inability to separate key secondary structures such as double-stranded RNA means it remains to be seen if this technology will adopt the same position as protein A does in mAb manufacture

    Dementia and risk of visual impairment in Chinese older adults

    Get PDF
    We had previously identified visual impairment increasing risk of incident dementia. While a bi-directional vision-cognition association has subsequently been proposed, no study has specifically examined the longitudinal association between dementia and incidence of clinically defined visual impairment. In this territory-wide community cohort study of 10,806 visually unimpaired older adults, we examined their visual acuity annually for 6 years and tested if dementia at baseline was independently associated with higher risk of incident visual impairment (LogMAR ≥ 0.50 in the better eye despite best correction, which is equivalent to moderate visual impairment according to the World Health Organization definition). By the end of Year 6, a total of 3151 (29.2%) participants developed visual impairment. However, we did not find baseline dementia associating with higher risk of incident visual impairment, after controlling for baseline visual acuity, cataract, glaucoma, diabetes, hypertension, hypercholesterolemia, heart diseases, stroke, Parkinson's disease, depression, hearing and physical impairments, physical, intellectual and social activities, diet, smoking, age, sex, educational level, and socioeconomic status. Among different covariables, baseline visual acuity appears to be more important than dementia in contributing to the development of visual impairment. Our present findings highlight the need for re-evaluating whether dementia is indeed a risk factor for visual impairment

    Periodontal conditions in Hong Kong Chinese men with osteoporosis/osteopenia

    Get PDF
    Abstract no. 0645published_or_final_versio

    European bone mineral density loci are also associated with BMD in East-Asian populations

    Get PDF
    Most genome-wide association (GWA) studies have focused on populations of European ancestry with limited assessment of the influence of the sequence variants on populations of other ethnicities. To determine whether markers that we have recently shown to associate with Bone Mineral Density (BMD) in Europeans also associate with BMD in East-Asians we analysed 50 markers from 23 genomic loci in samples from Korea (n = 1,397) and two Chinese Hong Kong sample sets (n = 3,869 and n = 785). Through this effort we identified fourteen loci that associated with BMD in East-Asian samples using a false discovery rate (FDR) of 0.05; 1p36 (ZBTB40, P = 4.3×10 -9), 1p31 (GPR177, P = 0.00012), 3p22 (CTNNB1, P = 0.00013), 4q22 (MEPE, P = 0.0026), 5q14 (MEF2C, P = 1.3×10 -5), 6q25 (ESR1, P = 0.0011), 7p14 (STARD3NL, P = 0.00025), 7q21 (FLJ42280, P = 0.00017), 8q24 (TNFRSF11B, P = 3.4×10 -5), 11p15 (SOX6, P = 0.00033), 11q13 (LRP5, P = 0.0033), 13q14 (TNFSF11, P = 7.5×10 -5), 16q24 (FOXL1, P = 0.0010) and 17q21 (SOST, P = 0.015). Our study marks an early effort towards the challenge of cataloguing bone density variants shared by many ethnicities by testing BMD variants that have been established in Europeans, in East-Asians. © 2010 Styrkarsdottir et al.published_or_final_versio

    Association of periodontal disease with osteoporosis/osteopenia in Chinese Men

    Get PDF
    published_or_final_versio

    Bioactive proteins and peptides isolated from Chinese medicines with pharmaceutical potential.

    Get PDF
    Some protein pharmaceuticals from Chinese medicine have been developed to treat cardiovascular diseases, genetic diseases, and cancer. Bioactive proteins with various pharmacological properties have been successfully isolated from animals such as Hirudo medicinalis (medicinal leech), Eisenia fetida (earthworm), and Mesobuthus martensii (Chinese scorpion), and from herbal medicines derived from species such as Cordyceps militaris, Ganoderma, Momordica cochinchinensis, Viscum album, Poria cocos, Senna obtusifolia, Panax notoginseng, Smilax glabra, Ginkgo biloba, Dioscorea batatas, and Trichosanthes kirilowii. This article reviews the isolation methods, molecular characteristics, bioactivities, pharmacological properties, and potential uses of bioactive proteins originating from these Chinese medicines.published_or_final_versio

    Hedgehog/notch-induced premature gliogenesis represents a new disease mechanism for Hirschsprung disease in mice and humans

    Get PDF
    Hirschsprung (HSCR) disease is a complex genetic disorder attributed to a failure of the enteric neural crest cells (ENCCs) to form ganglia in the hindgut. Hedgehog and Notch are implicated in mediating proliferation and differentiation of ENCCs. Nevertheless, how these signaling molecules may interact to mediate gut colonization by ENCCs and contribute to a primary etiology for HSCR are not known. Here, we report our pathway- based epistasis analysis of data generated by a genome-wide association study on HSCR disease, which indicates that specific genotype constellations of Patched (PTCH1) (which encodes a receptor for Hedgehog) and delta-like 3 (DLL3) (which encodes a receptor for Notch) SNPs confer higher risk to HSCR. Importantly, deletion of Ptch1 in mouse ENCCs induced robust Dll1 expression and activation of the Notch pathway, leading to premature gliogenesis and reduction of ENCC progenitors in mutant bowels. Dll1 integrated Hedgehog and Notch pathways to coordinate neuronal and glial cell differentiation during enteric nervous system development. In addition, Hedgehog-mediated gliogenesis was found to be highly conserved, such that Hedgehog was consistently able to promote gliogenesis of human neural crest-related precursors. Collectively, we defined PTCH1 and DLL3 as HSCR susceptibility genes and suggest that Hedgehog/Notch-induced premature gliogenesis may represent a new disease mechanism for HSCR.published_or_final_versio

    An Exome-Chip Association Analysis in Chinese Subjects Reveals a Functional Missense Variant of GCKR That Regulates FGF21 Levels

    Get PDF
    Fibroblast growth factor 21 (FGF21) is increasingly recognized as an important metabolic regulator of glucose homeostasis. Here, we conducted an exome-chip association analysis by genotyping 5,169 Chinese individuals from a community-based cohort and two clinic-based cohorts. A custom Asian exome-chip was used to detect genetic determinants influencing circulating FGF21 levels. Single-variant association analysis interrogating 70,444 single nucleotide polymorphisms identified a novel locus, GCKR, significantly associated with circulating FGF21 levels at genome-wide significance. In the combined analysis, the common missense variant of GCKR, rs1260326 (p.Pro446Leu), showed an association with FGF21 levels after adjustment for age and sex (P = 1.61 × 10−12; β [SE] = 0.14 [0.02]), which remained significant on further adjustment for BMI (P = 3.01 × 10−14; β [SE] = 0.15 [0.02]). GCKR Leu446 may influence FGF21 expression via its ability to increase glucokinase (GCK) activity. This can lead to enhanced FGF21 expression via elevated fatty acid synthesis, consequent to the inhibition of carnitine/palmitoyl-transferase by malonyl-CoA, and via increased glucose-6-phosphate–mediated activation of the carbohydrate response element binding protein, known to regulate FGF21 gene expression. Our findings shed new light on the genetic regulation of FGF21 levels. Further investigations to dissect the relationship between GCKR and FGF21, with respect to the risk of metabolic diseases, are warranted.postprin
    • …
    corecore