8 research outputs found

    Nucleobase-Modified Triplex-Forming Peptide Nucleic Acids for Sequence-Specific Recognition of Double-Stranded RNA

    No full text
    Because of the important roles noncoding RNAs play in gene expression, their sequence-specific recognition is important for both fundamental science and the pharmaceutical industry. However, most noncoding RNAs fold in complex helical structures that are challenging problems for molecular recognition. Herein, we describe a method for sequence-specific recognition of double-stranded RNA using peptide nucleic acids (PNAs) that form triple helices in the major grove of RNA under physiologically relevant conditions. We also outline methods for solid-phase conjugation of PNA with cell-penetrating peptides and fluorescent dyes. Protocols for PNA preparation and binding studies using isothermal titration calorimetry are described in detail

    Nucleophilic catalysis of acylhydrazone equilibration for protein-directed dynamic covalent chemistry

    Get PDF
    Dynamic covalent chemistry uses reversible chemical reactions to set up an equilibrating network of molecules at thermodynamic equilibrium, which can adjust its composition in response to any agent capable of altering the free energy of the system. When the target is a biological macromolecule, such as a protein, the process corresponds to the protein directing the synthesis of its own best ligand. Here, we demonstrate that reversible acylhydrazone formation is an effective chemistry for biological dynamic combinatorial library formation. In the presence of aniline as a nucleophilic catalyst, dynamic combinatorial libraries equilibrate rapidly at pH 6.2, are fully reversible, and may be switched on or off by means of a change in pH. We have interfaced these hydrazone dynamic combinatorial libraries with two isozymes from the glutathione S-transferase class of enzyme, and observed divergent amplification effects, where each protein selects the best-fitting hydrazone for the hydrophobic region of its active site

    Potential in vivo roles of nucleic acid triple-helices

    No full text
    The ability of double-stranded DNA to form a triple-helical structure by hydrogen bonding with a third strand is well established, but the biological functions of these structures remain largely unknown. There is considerable albeit circumstantial evidence for the existence of nucleic triplexes in vivo and their potential participation in a variety of biological processes including chromatin organization, DNA repair, transcriptional regulation and RNA processing has been investigated in a number of studies to date. There is also a range of possible mechanisms to regulate triplex formation through differential expression of triplex-forming RNAs, alteration of chromatin accessibility, sequence unwinding and nucleotide modifications. With the advent of next generation sequencing technology combined with targeted approaches to isolate triplexes, it is now possible to survey triplex formation with respect to their genomic context, abundance and dynamical changes during differentiation and development, which may open up new vistas in understanding genome biology and gene regulation
    corecore