48 research outputs found

    Comparative anatomical dimensions of the complete human and porcine spine

    Get PDF
    New spinal implants and surgical procedures are often tested pre-clinically on human cadaver spines. However, the availability of fresh frozen human cadaver material is very limited and alternative animal spines are more easily available in all desired age groups, and have more uniform geometrical and biomechanical properties. The porcine spine is said to be the most representative model for the human spine but a complete anatomical comparison is lacking. The goal of this descriptive study was to compare the anatomical dimensions of the cervical, thoracic, and lumbar vertebrae of the human and porcine spine in order to determine whether the porcine spine can be a representative model for the human spine. CT scans were made of 6 human and 6 porcine spines, and 16 anatomical dimensions were measured per individual vertebrae. Comparisons were made for the absolute values of the dimensions, for the patterns of the dimensions within four spinal regions, and normalised values of the dimensions within each individual vertebra. Similarities were found in vertebral body height, shape of the end-plates, shape of the spinal canal, and pedicle size. Furthermore, regional trends were comparable for all dimensions, except for spinal canal depth and spinous processus angle. The size of the end-plates increased more caudally in the human spine. Relating the dimensions to the size of the vertebral body, similarities were found in the size of the spinal canal, the transverse processus length, and size of the pedicles. Taking scaling differences into account, it is believed that the porcine spine can be a representative anatomical model for the human spine in specific research questions

    Behavioral Defects in Chaperone-Deficient Alzheimer's Disease Model Mice

    Get PDF
    Molecular chaperones protect cells from the deleterious effects of protein misfolding and aggregation. Neurotoxicity of amyloid-beta (Aβ) aggregates and their deposition in senile plaques are hallmarks of Alzheimer's disease (AD). We observed that the overall content of αB-crystallin, a small heat shock protein molecular chaperone, decreased in AD model mice in an age-dependent manner. We hypothesized that αB-crystallin protects cells against Aβ toxicity. To test this, we crossed αB-crystallin/HspB2 deficient (CRYAB-/-HSPB2-/-) mice with AD model transgenic mice expressing mutant human amyloid precursor protein. Transgenic and non-transgenic mice in chaperone-sufficient or deficient backgrounds were examined for representative behavioral paradigms for locomotion and memory network functions: (i) spatial orientation and locomotion was monitored by open field test; (ii) sequential organization and associative learning was monitored by fear conditioning; and (iii) evoked behavioral response was tested by hot plate method. Interestingly, αB-crystallin/HspB2 deficient transgenic mice were severely impaired in locomotion compared to each genetic model separately. Our results highlight a synergistic effect of combining chaperone deficiency in a transgenic mouse model for AD underscoring an important role for chaperones in protein misfolding diseases
    corecore